Achsensymmetrie und Punktsymmetrie nachweisen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Achsensymmetrie und Punktsymmetrie nachweisen
Nach dem Schauen dieses Videos wirst du in der Lage sein, Achsensymmetrie und Punktsymmetrie von Funktionen rechnerisch und durch Anschauung zu überprüfen.
Zunächst lernst du, wie Achsensymmetrie und Punktsymmetrie bei ganzrationalen Funktionen rechnerisch überprüft oder auch anhand der vorkommenden Exponenten bestimmt werden kann. Anschließend lernst du, wann keine Symmetrie zu erwarten ist. Abschließend lernst du, was bei besonderen Funktionstypen wie der Sinus- und Cosinusfunktion zu beachten ist.
Lerne etwas über den ersten Eindruck und wann du dich lieber nicht darauf verlässt.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Achsensymmetrie, Punktsymmetrie, Gegenzahl, ganzrationale Funktion, Polynom, Potenz und Exponent.
Bevor du dieses Video schaust, solltest du bereits wissen, was eine Potenz, ein Polynom und eine ganzrationale Funktion ist.
Nach diesem Video wirst du darauf vorbereitet sein, weitere Schritte der Kurvendiskussion und Analysis zu lernen.
Transkript Achsensymmetrie und Punktsymmetrie nachweisen
Was hältst du von diesen Menschen? Gar nicht so leicht, fremden Leuten irgendwelche Eigenschaften anzusehen, oder? So ähnlich ist das auch bei mathematischen Funktionen. Wie du zwei bestimmte Eigenschaften, nämlich „Achsensymmetrie und Punktsymmetrie“, bei Funktionen nachweist, lernst du in diesem Video. Der Graph einer Funktion ist Achsensymmetrisch zur y-Achse, wenn bei jedem x-Wert zum gleichen y-Wert führt. Also „F von x gleich F von Minus-x“ für alle „x“ des Definitionsbereiches gilt. Der Graph einer Funktion ist hingegen Punktsymmetrisch zum Koordinatenursprung, wenn das Einsetzen von „x“ jeweils zu einem Pärchen von Gegenzahlen führt. Also „F von x gleich minus-F von Minus-x“ für alle „x Element D“ gilt. Durch Einsetzen von „Minus-x“ kannst du demnach jede beliebige Funktion auf ihre Symmetrie prüfen, indem du das Ergebnis mit dem ursprünglichen Funktionsterm vergleichst. Rechnen wir ein Beispiel durch: Wenn wir in diese Funktionsgleichung „Minus-x“ einsetzen, können wir die Minuszeichen aus den Potenzen ausklammern, also die „Minus-eins“ als Faktoren betrachten. Berechnen wir nun die Potenzen von „Minus-eins“, fallen sie alle heraus, denn Minus mal Minus ergibt Plus. Wir erhalten also genau den ursprünglichen Term von „F von x“. Damit ist „F von x gleich F von Minus-x“ erfüllt; die Funktion ist also achsensymmetrisch. Gleich noch ein Beispiel: Setzen wir in diese Funktionsgleichung „Minus-x“ ein, können wir die Minuszeichen ebenfalls ausklammern. Hier fallen sie allerdings nicht weg, denn „Minus-eins hoch fünf“ bleibt „Minus-eins“. Beim Ausklammern der Minuszeichen wird klar, dass bei „F von Minus-x“ alle Vorzeichen genau umgekehrt zum Term von „F von x“ stehen. Damit ist „F von x gleich minus-F von Minus-x“ erfüllt; die Funktion ist also punktsymmetrisch. Vielleicht ist es dir schon aufgefallen: Bei solchen „ganzrationalen Funktionen“, deren Funktionsterm sich aus einem „Polynom“, also aus einer Summe von „Potenzen von x“ zusammensetzt, sind die „Exponenten“ entscheidend für die Symmetrie. Sind alle Exponenten gerade, ist der Graph der Funktion achsensymmetrisch. Sind hingegen alle Exponenten ungerade, ist der Graph punktsymmetrisch. Aufpassen musst du dabei auf die Potenz „x-hoch-Null“, also, ob ein Summand ohne x im Polynom vorkommt. Das stört beim Nachweis der Achsensymmetrie nicht – bei der Punktsymmetrie aber sehr wohl. „x-hoch-Null“ zählt in diesem Sinne wie eine gerade Potenz von x. Tauchen sowohl gerade als auch ungerade Exponenten im Funktionsterm auf, ist der Funktionsgraph nicht symmetrisch. Das kannst du zum Beispiel in dieser Funktion nachprüfen, indem du „eins“ und „Minus-eins“ zur Probe einsetzt. Man erhält zwei Ergebnisse mit unterschiedlichem Betrag, also klappt keiner der beiden Symmetrie-Nachweise. Allein durch die Betrachtung der Exponenten kannst du die Symmetrieeigenschaften von Funktionen also schon ganz gut beurteilen. Das klappt allerdings nur bei Ganzzahligen Exponenten, also zum Beispiel nicht bei „x-hoch-ein-Halb“, was ja „Wurzel-x“ ist. Funktionen wie „Wurzel-x“ oder auch „L-N-x“ sind nur für positive x-Werte definiert, deshalb können sie auch nicht symmetrisch sein, da „F von Minus-x“ nicht gebildet werden kann. Ein Blick auf den Definitionsbereich ist also wichtig, um über Symmetrie entscheiden zu können. Diese Funktion ist zum Beispiel Achsensymmetrisch, denn hier können negative x-Werte eingesetzt werden. Und dass, obwohl „x gleich Null“ eine Definitionslücke ist. Die stört hier nicht bei der Betrachtung, genauso wenig wie beispielsweise bei der Funktion „Eins-durch-x“, die zwar einen negativen, aber eben auch ungeraden Exponenten aufweist und deshalb Punktsymmetrisch ist. Es gibt noch weitere Funktionen, deren Symmetrie nicht auf den ersten Blick sichtbar ist, zum Beispiel Exponentialfunktionen wie diese hier: Hier ergibt sich nach dem Einsetzen von „Minus-x“, und dem Vertauschen der Summanden, die gleiche Funktion „F“. „F von x“ ist also gleich „F von Minus-x“, und der Funktionsgraph damit achsensymmetrisch. Jetzt kannst du dir vorstellen, dass es auch „Kombinationen“ von Potenzen, Wurzeln und Exponentialfunktionen geben kann. Davon musst du dich nicht verunsichern lassen. Setze einfach „Minus-x“ überall in den Funktionsterm ein, und vergleiche. Zwei besondere Funktionen sollten wir uns aber noch ansehen: Die Sinus- und die Cosinusfunktion. Aus der Trigonometrie kennst du vielleicht den Zusammenhang, dass „Sinus von Minus-x“ gleich „Minus-Sinus-x“ gilt, sowie „Cosinus von Minus-x“ gleich „Cosinus-x“. Das bedeutet, für den Sinus gilt das, was für ungerade Potenzen gilt – die Sinusfunktion ist also punktsymmetrisch, während die Cosinusfunktion achsensymmetrisch ist. Fassen wir alles zusammen: Die Symmetrieeigenschaften einer Funktion prüfst du durch Einsetzen von „Minus-x“. Gilt „F von x gleich F von Minus-x“, ist die Funktion achsensymmetrisch zur y-Achse. Das ist immer der Fall, wenn „x“ nur mit geraden Exponenten im Funktionsterm auftaucht. Gilt „F von x gleich minus-F von Minus-x“, ist die Funktion punktsymmetrisch zum Ursprung. Das ist bei ganzrationalen Funktionen immer dann der Fall, wenn „x“ nur mit ungeraden Exponenten auftaucht – und kein „x-hoch-Null“. Bei gemischten Exponenten ist der Funktionsgraph nicht symmetrisch. Andere und gemischte Funktionstypen betrachtest du Schritt für Schritt durch Einsetzen von „Minus-x“. Aber die wahren Werte zeigen sich oft erst bei genauem Hinsehen. Oder hättest du diesem Herrn hier angesehen, dass er als Boxer ein Stadtmeister im Fliegengewicht ist?
Achsensymmetrie und Punktsymmetrie nachweisen Übung
-
Vervollständige den Text zur Achsen- und Punktsymmetrie von Funktionen.
TippsSetze $-x$ in die Funktion ein, um sie auf Symmetrie zu untersuchen.
Eine Funktion ist punktsymmetrisch zum Ursprung, wenn die Funktionswerte an den Stellen $x$ und $-x$ Gegenzahlen zueinander sind.
Die Funktion $f(x) = x^2-x$ ist nicht symmetrisch, denn $f(-1) = 2$ und $f(1) =0$.
LösungAchsen- und Punktsymmetrie eines Funktionsgraphen lassen sich durch ein einfaches Kriterium rechnerisch überprüfen. Mit der Achsensymmetrie ist dabei Spiegelsymmetrie zur $y$-Achse gemeint und mit der Punktsymmetrie die Drehsymmetrie um $180^\circ$ um den Ursprung. Andere Symmetrien werden hier nicht in Betracht gezogen.
Wir erkennen die Achsen- oder Punktsymmetrie einer Funktion – oder genauer: ihres Funktionsgraphen, indem wir in den Funktionsterm anstelle der Variablen $x$ den Wert $-x$ einsetzen und den Funktionsterm ausrechnen. Die Funktion ist achsensymmetrisch, wenn sie folgendes Kriterium erfüllt: Für alle Werte $x$ aus dem Definitionsbereich $\mathbb D$ der Funktion $f$ gilt: $f(x) = f(-x)$. Diese Gleichung bedeutet: Sind zwei $x$-Werte Gegenzahlen zueinander – so ist der Funktionswert von $f$ an beiden Stellen gleich. Mit anderen Worten: Wir erhalten den Funktionswert an der Stelle $-x$, indem wir den Funktionswert an der Stelle $x$ auf die andere Seite der $y$-Achse spiegeln. Eine Funktion ist genau dann nicht achsensymmetrisch, wenn diese Spiegelungsbedingung an mindestens einem Punkt des Definitionsbereiches verletzt ist, d. h. wenn die Gleichung $f(-x)=f(x)$ für mindestens ein $x \in \mathbb D$ nicht erfüllt ist.
Die Symmetriebedingung lässt sich an ganzrationalen Funktionen leicht überprüfen. Eine ganzrationale Funktion ist genau dann achsensymmetrisch, wenn alle Potenzen der Variablen gerade sind. Die Funktion
$f(x) = \dfrac{1}{4}x^4-3x^2+\dfrac{4}{3}$
erfüllt diese Bedingung, sie ist also achsensymmetrisch.
Als rationale Funktion bezeichnen wir solche Funktionen, deren Funktionsterm eine Summe von Potenzen der Variable $x$ ist. Die Exponenten dieser Polynomfunktionen sind ganze Zahlen. Solche rationalen Funktionen sind genau dann punktsymmetrisch zum Ursprung, wenn alle Exponenten ungerade sind. Denn für ungerade Exponenten $n$ gilt immer:
$(-x)^n = (-1)^n \cdot x^n = {-x^n}$
Um die Symmetriebedingung überprüfen zu können, dürfen die Exponenten einer rationalen Funktion auch negativ sein. Bruchzahlen im Exponenten sind im Allgemeinen aber ausgeschlossen. Denn in solche Funktionen können wir in der Regel nicht alle $x$ und $-x$ einsetzen. Die Funktion $x^{\frac{1}{2}} = \sqrt{x}$ zum Beispiel ist für negative $x$ nicht definiert, daher können wir auch nicht das Negative eines beliebigen Wertes $x \in \mathbb D$ einsetzen.
Die Funktion $f(x) = x^{\frac{1}{2}} = \sqrt{x}$ ist also weder achsen- noch punktsymmetrisch, weil die Bedingung
$f(x) = \pm f(-x)$ gar nicht für jedes $x \in \mathbb D$ überprüfbar ist.
-
Bestimme die Symmetrieeigenschaften der Funktionen.
TippsEine ganzrationale Funktion ist punktsymmetrisch zum Ursprung, wenn alle Potenzen ungerade sind.
Eine ganzrationale Funktion mit geraden und ungeraden Potenzen ist nicht achsensymmetrisch und nicht punktsymmetrisch.
LösungEine Funktion heißt punktsymmetrisch, wenn für alle $x \in \mathbb D$ gilt: $f(-x) = -f(x)$. Gilt stattdessen $f(-x) = f(x)$ für alle Werte $x$ des Definitionsbereiches $\mathbb D$, so ist die Funktion achsensymmetrisch. Ist keines der beiden Kriterien erfüllt, so ist die Funktion nicht symmetrisch. Dies tritt insbesondere dann auf, wenn die Bedingung $f(-x) = f(x)$ bzw. $f(-x) = -f(x)$ nicht für jedes $x \in \mathbb D$ erfüllt ist oder die Funktion nicht für jedes $x \in \mathbb D$ definiert ist.
Dies sind die korrekten Aussagen:
- Die Funktion $f(x) = \ln(x)$ ist nicht für jedes $-x$ mit $x \in \mathbb D$ definiert.
- Die Funktion $f(x) = \dfrac{4}{3}x^5-8x^3+7x$ ist punktsymmetrisch zum Ursprung.
- Die Funktion $f(x)=\dfrac{e^x+e^{-x}}{1000}$ erfüllt die Bedingung $f(x) = f(-x)$ für alle $x \in \mathbb D$.
- Die Funktion $f(x) = \dfrac{2}{3}x^4-\dfrac{5}{6}x^3-\dfrac{1}{3}x^2$ erfüllt die Bedingung $f(x) = \pm f(-x)$ nicht für alle $x,-x \in \mathbb D$.
$f(1) = \dfrac{2}{3}1^4-\dfrac{5}{6}1^3-\dfrac{1}{3}1^2 = -\dfrac{3}{6} = -\dfrac{1}{2}$, aber
$f(-1) = \dfrac{2}{3}(-1)^4-\dfrac{5}{6}(-1)^3-\dfrac{1}{3}(-1)^2= \dfrac{7}{6} \neq \pm \dfrac{3}{6}$.
Hinweis: Keine der gegebenen Funktionen ist punkt- und achsensymmetrisch.
-
Ermittle, welche Art von Symmetrie die Funktionen aufweisen.
TippsBeachte die Definitionsbereiche der Funktionen!
Setze $-x$ anstelle von $x$ in den Funktionsterm ein und vergleiche das Ergebnis mit dem Funktionsterm $f(x)$.
Beispiel:
Die Funktion $f(x) = x \cdot \sin(x)$ ist punktsymmetrisch:
$f(-x) = (-x) \cdot \sin(-x) = (-x) \cdot (-\sin(x)) = x \cdot \sin(x) = f(x)$
LösungEine Funktion heißt punktsymmetrisch, wenn für alle $x \in \mathbb D$ gilt: $f(-x) = -f(x)$. Gilt stattdessen $f(-x) = f(x)$ für alle Werte $x$ des Definitionsbereiches $\mathbb D$, so ist die Funktion achsensymmetrisch. Ist keines der beiden Kriterien erfüllt, so ist die Funktion nicht symmetrisch. Dies tritt insbesondere dann auf, wenn die Bedingung $f(-x) = f(x)$ bzw. $f(-x) = -f(x)$ nicht für jedes $x \in \mathbb D$ erfüllt ist oder die Funktion nicht für jedes $x \in \mathbb D$ definiert ist.
Hier ist die korrekte Zuordnung:
Punktsymmetrische Funktionen:- $f(x) = \dfrac{x^4-3x^2}{x}$: Du kannst ein $x$ kürzen und erhältst $f(x) = 4x^3+3x$. Wegen der ungeraden Potenzen ist $f$ punktsymmetrisch.
- $f(x) = 5x^5+3x^3-x^1$: Die Funktion ist ganzrational mit ungeraden Potenzen, also punktsymmetrisch.
- $f(x) = \sqrt[3]{x}$: Die dritte Wurzel ist auch für negative $x$ definiert. Sie nimmt negative Werte an, wenn $x$ negativ ist und positive Werte, wenn $x$ positiv ist. Außerdem ist $\sqrt[3]{-x} = -\sqrt[3]{x}$. Also ist $f$ punktsymmetrisch.
- $f(x) = \sin(x)\cos(x)$: Setzt du $-x$ in die Funktion ein, erhältst du durch die Achsensymmetrie der Cosinusfunktion und der Punktsymmetrie der Sinusfunktion $f(-x) = \sin(-x)\cos(-x) = -\sin(x)\cos(x)$. Die Funktion $f$ ist also punktsymmetrisch.
Achsensymmetrische Funktionen:- $f(x) = -x^4-x^2-1$: Die ganzrationale Funktion enthält nur gerade Potenzen von $x$. Sie ist also achsensymmetrisch.
- $f(x) = (x^2-1)^2$: Durch Ausmultiplizieren erhältst du $f(x) = x^4-2x^2+1$, also wieder eine ganzrationale Funktion mit geraden Exponenten.
- $f(x) = \sin(x^2)$: Setzt du $-x$ anstelle von $x$ in den Funktionsterm ein, so ändert sich dieser nicht: $\sin((-x)^2) = \sin(x^2)$.
- $f(x) = \cos(-x)$: Ersetzt du $x$ durch $-x$, so erhältst du: $f(-x) = \cos(-(-x)) = \cos(x)$. Die Cosinusfunktion ist achsensymmetrisch, daher ist $\cos(x) = \cos(-x) = f(x)$. Die Funktion $f$ ist also achsensymmetrisch.
Nicht symmetrische Funktionen:- $f(x) = (x-1)^2$: Mit der zweiten binomischen Formel erhältst du $f(x) = x^2-2x+1$. Diese ganzrationale Funktion enthält sowohl gerade als auch ungerade Exponenten. Sie ist also nicht symmetrisch.
- $f(x) = \ln(x+4)$: Die Logarithmusfunktion ist nur für positive Variablenwerte definiert. Hier ist also $\mathbb D_f = (-4,\infty)$. Du erkennst am Definitionsbereich, dass die Funktion nicht symmetrisch ist, da du zwar $f(5) = \ln(9)$ berechnen kannst, aber $f(-5) = \ln(-1)$ nicht definiert ist. Also kann auch nicht $f(-5) =\pm f(5)$ gelten.
- $f(x) = x^3-x^2+x^1-1$: Die Funktion ist ganzrational mit geraden und ungeraden Exponenten, also nicht symmetrisch.
-
Leite die Symmetrieeigenschaften des Graphen aus dem Funktionsterm ab.
TippsIst $f(x)$ eine beliebige Funktion mit Definitionsbereich $\mathbb D_f$, so ist wegen $(-x)^2 = x^2$ die Funktion $g(x) := f(x^2)$ stets achsensymmetrisch.
Eine Funktion mit Definitionsbereich $\mathbb D_f= (0,\infty)$ kann nicht symmetrisch sein.
LösungWir gehen die Funktionen im Einzelnen durch:
$f(x) = \sqrt{x^2+2}$:
- Die Funktion ist achsensymmetrisch.
- Die Wurzelfunktion kannst du zwar nur auf nicht-negative Werte anwenden, das stört aber hier nicht, denn unter der Wurzel steht $x^2+2$ und das ist immer positiv.
- Du erkennst die Symmetrie der Funktion an dem Ausdruck $x^2$ unter der Wurzel; genau daran, dass nur die Potenz $x^2$ im Funktionsterm vorkommt. Setzt du $-x$ in die Funktion ein, so steht unter der Wurzel
$f(x) = e^{\ln(x)}$:
- Die Funktion ist nicht symmetrisch.
- Man könnte meinen, dass $f(x)=e^{\ln(x)}=x$ gilt und die Funktion $x$ punktsymmetrisch ist. Aber das stimmt nicht: Die Funktion $\ln(x)$ ist nur auf $\mathbb{D_{\ln}} = (0,\infty)$ definiert. Daher ist auch $\mathbb D_f = (0,\infty)$. Der Definitionsbereich der punktsymmetrischen Funktion $x$ dagegen ist $\mathbb D_x=\mathbb R$.
- Dass $f(x) = e^{\ln(x)}$ nicht symmetrisch ist, erkennst du also an dem Term $\ln(x)$.
$f(x) = \sin(x^2) - \sin(x)^2$:
- Die Funktion ist achsensymmetrisch.
- Zwar ist die Sinusfunktion punktsymmetrisch, aber das stört hier nicht, denn in diese Funktion werden nur Werte der Form $x^2$ eingesetzt.
- Dass die Funktion achsensymmetrisch ist, erkennst du also daran, dass die Variable nur quadratisch, also nur als Term der Form $x^2$ vorkommt.
$f(x) = (x^5-2x^3+x)^2$:
- Die Funktion ist achsensymmetrisch.
- Zwar steht in der Klammer eine punktsymmetrische Funktion, aber die gesamte Klammer wird noch quadriert.
- Rechnest du die quadrierte Klammer aus, so erhältst du $f(x) = x^{10} -4x^8+6x^6-4x^4+x^2$. Dies ist eine rationale Funktion mit geraden Exponenten, also achsensymmetrisch.
- Dass die Funktion achsensymmetrisch ist, erkennst du also an dem Exponenten $2$ an der Klammer.
$f(x) = g(-x) - g(x)$:
- Die Funktion ist punktsymmetrisch.
- Dass $g$ eine beliebige Funktion ist, also gar keine Symmetrie haben muss, stört hier nicht. Du kannst einfach $-x$ anstelle von $x$ in $f$ einsetzen und den Funktionsterm ausrechnen:
- Dass $f$ punktsymmetrisch ist, liegt also an den beiden Minuszeichen.
- Würdest du z.B. das Minuszeichen in der Mitte zwischen den beiden Termen durch ein Pluszeichen ersetzen, so würde die Funktion achsensymmetrisch werden.
- Auch mit einem Malzeichen statt einem Pluszeichen in der Mitte wäre sie achsensymmetrisch.
- Ersetzt du das Minuszeichen in der Klammer durch ein Pluszeichen, so ist die Funktion $0$.
- Ersetzt du beide Minuszeichen durch Pluszeichen, so ist die Funktion im Allgemeinen nicht mehr symmetrisch.
-
Berechne die Funktionswerte für $x = 1$ und $x = -1$.
TippsSetze überall dort, wo $x$ steht, den Wert $1$ ein, um den Funktionswert $f(1)$ zu berechnen.
Für Potenzen von $-1$ gilt: $(-1)^n = 1$, falls $n$ eine gerade Zahl ist und $(-1)^n = -1$, falls $n$ eine ungerade Zahl ist.
Beispiel: $f(x) = x^3-2x^2$:
$f(-1) = (-1)^3 -2 \cdot (-1)^2 = (-1) - 2 \cdot (+1) = -1-2 = -3$
LösungWir gehen die Rechnung einzeln durch:
Die Funktion ist
$f(x) = \dfrac{2}{3}x^4 -\dfrac{5}{6} x^3-\dfrac{1}{3}x^2+\dfrac{1}{6}$.
Um den Funktionswert an der Stelle $x=1$ zu berechnen, also $f(1)$, setzen wir überall den Wert $1$ anstelle von $x$ ein und benutzen, dass $1^n=1$ für jeden Exponenten $n$ ist:
$ \begin{array}{lll} f(1) &= \dfrac{2}{3} \cdot (1)^4-\dfrac{5}{6} \cdot (1)^3-\dfrac{1}{3} \cdot (1)^2+\dfrac{1}{6} \qquad &\Big| \text{berechne Potenzen} \\ & & \\ &= \dfrac{2}{3} -\dfrac{5}{6}-\dfrac{1}{3}+\dfrac{1}{6} \qquad &\Big| \text{erweitere zum Nenner $6$} \\ & & \\ &= \dfrac{4}{6} -\dfrac{5}{6}-\dfrac{2}{6}+\dfrac{1}{6} \qquad &\Big| \text{fasse zusammen} \\ & & \\ &= -\dfrac{2}{6} &\Big| \text{kürze} \\ & & \\ &= -\dfrac{1}{3} &\\ \end{array} $
Ganz analog setzen wir nun den Wert $x=-1$ ein. In der Rechnung beachten wir, dass $(-1)^n =1$, wenn $n$ gerade ist und $(-1)^n=-1$, wenn $n$ ungerade ist:
$ \begin{array}{lll} f(-1) &= \dfrac{2}{3} \cdot (-1)^4-\dfrac{5}{6} \cdot (-1)^3-\dfrac{1}{3} \cdot (-1)^2+\dfrac{1}{6} \qquad &\Big| \text{berechne Potenzen} \\ & & \\ &= \dfrac{2}{3} +\dfrac{5}{6} -\dfrac{1}{3} + \dfrac{1}{6} \qquad &\Big| \text{erweitere zum Nenner $6$} \\ & & \\ &= \dfrac{4}{6} +\dfrac{5}{6} -\dfrac{2}{6} + \dfrac{1}{6} \qquad &\Big| \text{fasse zusammen} \\ & & \\ &= \dfrac{8}{6} \qquad &\Big| \text{kürze} \\ & & \\ &= \dfrac{4}{3} & \end{array} $
-
Analysiere die Sätze.
TippsDie Spiegelung einer Funktion $f(x)$ an der $y$-Achse ergibt die Funktion $g(x) = f(-x)$.
Ist $\mathbb D_f$ nicht symmetrisch zum Ursprung, so gibt es ein $x \in \mathbb D_f$ mit $-x \notin \mathbb D_f$.
LösungFolgende Aussagen sind richtig:
- Es gibt eine Funktion, die sowohl punkt- als auch achsensymmetrisch ist.
- Ist eine Funktion $f$ symmetrisch, so ist auch ihr Definitionsbereich symmetrisch, d.h. für jedes $x \in \mathbb D_f$ ist auch $-x \in \mathbb D_f$.
- Spiegelt man den Funktionsgraphen einer punktsymmetrischen Funktion an der $y$-Achse, so erhält man wieder eine punktsymmetrische Funktion.
Folgende Aussagen sind falsch:
- Ist $f(x)$ punktsymmetrisch und $g(x)$ achsensymmetrisch, so ist $f(x) \cdot g(x)$ nicht symmetrisch.
- Hat eine Funktion eine Definitionslücke bei einem Wert $x \neq 0$, so ist sie nicht symmetrisch.
- Die Funktion $\tan(x) = \dfrac{\sin(x)}{\cos(x)}$ ist nicht symmetrisch, denn $\sin(x)$ und $\cos(x)$ haben verschiedene Symmetrien.

Ganzrationale Funktionen – Definition und Beispiele

Einführung in die Kurvendiskussion

Verhalten ganzrationaler Funktionen im Unendlichen

Symmetrie von Funktionsgraphen

Achsensymmetrie und Punktsymmetrie nachweisen

Nullstellen durch Polynomdivision bestimmen

Nullstellen durch Substitution bestimmen

Nullstellen von Funktionen höheren Grades

Extrempunkte bestimmen – Beispiele

Ganzrationale Funktionen – Symmetrie und Faktorisierung

Zweite Ableitung und Wendepunkte

Kurvendiskussion für quadratische Funktionen
6.399
sofaheld-Level
6.573
vorgefertigte
Vokabeln
8.510
Lernvideos
37.559
Übungen
34.073
Arbeitsblätter
24h
Hilfe von Lehrer*
innen

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Rechteck
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was ist eine Viertelstunde
- Prisma
- Mitternachtsformel
- Grundrechenarten Begriffe
- Dreiecksarten
- Quader
- Satz des Pythagoras
- Dreieck Grundschule
- Erste binomische Formel
- Kreis
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen in Worten schreiben
- Meter
- Orthogonalität
- Schriftlich multiplizieren
- Brüche multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen berechnen
- Brüche addieren
- Kongruenz
- Exponentialfunktion
- Scheitelpunktform
- Logarithmus
- Erwartungswert
- Skalarprodukt
- Primfaktorzerlegung
- Quadratische Ergänzung
- Zinseszins
- Geradengleichung aus zwei Punkten bestimmen
- Sinusfunktion