Achsensymmetrische Figuren

Grundlagen zum Thema Achsensymmetrische Figuren
Was lerne ich in der Grundschule über achsensymmetrische Figuren?
Eine Figur, die man an einer Linie so zusammenfalten kann, dass zwei gleiche Teile entstehen, nennt man achsensymmetrische Figur.
Die Linie, die die beiden Teile voneinander trennt, nennt man Symmetrieachse oder auch Spiegelachse.
Formen können eine oder mehrere Symmetrieachsen besitzen. Lerne zusammen mit Kappu, was für symmetrische Figuren es gibt.
Transkript Achsensymmetrische Figuren
Kappu möchte eine Geburtstagskarte basteln. Seine Freundin Peggy kommt später, um diese abzuholen. Als Taube ist sie natürlich die perfekte Postbotin. Während Kappu das Papier direkt in der Mitte faltet, fällt ihm etwas auf. Die beiden Teile sind genau gleich und überdecken sich. Die Karte ist also eine Achsensymmetrische Figur. Kappu hat ein RECHTECKIGES Blatt Papier in der Mitte gefaltet. Dadurch hat er zwei genau gleiche Teile erhalten. Diese gleichen Teile sind zueinander symmetrisch. Die Linie, die die beiden Teile voneinander trennt, nennt man Spiegelachse oder auch Symmetrieachse. In so einem Fall nennt man die beiden Figuren auch achsensymmetrisch. Kannst du dir vorstellen, wo das Rechteck noch gefaltet werden könnte, damit zwei symmetrische Teile entstehen? Falten wir das Rechteck SO erhalten wir diese beiden Teile, die ebenfalls gleich sind. Das Rechteck hat also zwei Symmetrieachsen. Auch andere Formen haben eine oder mehrere Symmetrieachsen. Schauen wir uns doch einmal das Quadrat an. Was meinst du, wie viele Symmetrieachsen das Quadrat hat? Wir können es HIER zusammenklappen SO DORT oder HIER. Jedes Mal erhalten wir zwei gleiche Teile. Das Quadrat hat also 4 Symmetrieachsen. Lass uns die nächste Form betrachten, die Raute. Wie viele Symmetrieachsen hat die Raute wohl? Falten wir sie so, erhalten wir zwei gleich große Teile.… Hier liegt also die erste Symmetrieachse. Wir können sie auch so falten und erhalten auch wieder zwei gleich große Teile. Die Raute besitzt also zwei Symmetrieachsen. Eine Figur, die sehr ähnlich ist wie die Raute, ist das Drachenviereck. Hat es wohl auch zwei Symmetrieachsen? Klappen wir es SO, erhalten wir zwei gleiche Teile. Also liegt hier eine Symmetrieachse des Drachenvierecks. Klappen wir es so, sehen wir, dass die Formen sich nicht gegenseitig überdecken. Hier liegt also keine Symmetrieachse. Fallen dir noch weitere symmetrische Formen ein? Du kannst sie dir ja auf ein Blatt Papier malen und selbst ausprobieren. Auch Buchstaben und Zahlen können achsensymmetrisch sein. Schau dir doch einmal das 'A' an. Kannst du erkennen, wo man hier die Symmetrieachse einzeichnen kann? Wir können hier die Symmetrieachse einzeichnen und haben zwei gleiche Teile. Schauen wir uns doch mal eine Zahl an. Wie viele Symmetrieachsen hat die Null? Eine Symmetrieachse liegt HIER und eine HIER. Die Null hat also 2 Symmetrieachsen. Auch in der Natur gibt es achsensymmetrische Formen. Schauen wir uns doch mal einen Schmetterling an. Betrachten wir seine Flügel genauer. Wenn wir die Flügel SO zusammenklappen, sehen wir, dass sie sich gegenseitig überdecken. Die Symmetrieachse verläuft also durch den Körper des Schmetterlings. Auch viele Blätter sind symmetrisch. Wenn du das nächste Mal spazieren gehst, kannst du das ja einmal ausprobieren. Kappu hat seine Karte pünktlich fertiggestellt. Peggy ist auch schon da, um sie abzuholen. Schauen wir uns noch einmal an, was wir gelernt haben. Eine Figur, die man an einer Linie so zusammenfalten kann, dass zwei gleiche Teile entstehen, nennt man achsensymmetrische Figur. Die Linie, die die beiden Teile voneinander trennt, nennt man Symmetrieachse oder auch Spiegelachse. Hier sind noch andere Formen, die wir uns angeschaut haben. An wen muss Peggy die Karte eigentlich ausliefern? Oh! Es ist Peggys Geburtstag, da freut sie sich aber!
Achsensymmetrische Figuren Übung
-
Welche Figuren sind achsensymmetrisch? Gib an.
TippsWenn du eine achsensymmetrische Figur an der Spiegelachse faltest, erhältst du zwei genau gleiche Teile.
LösungQuadrat, Rechteck, Drachenviereck und der Buchstabe A sind achsensymmetrische Figuren. Wenn du sie an der Symmetrieachse faltest, erhältst du zwei gleiche Teile. Das Quadrat hat sogar drei Symmetrieachsen, an denen du es falten kannst.
-
Welche Symmetrieachsen sind richtig eingezeichnet? Gib an.
TippsWenn eine Figur in der Mitte gefaltet wird und zwei genau gleiche Teile entstehen, sind diese zueinander symmetrisch. Die Linie, die beide Teile trennt, heißt Symmetrieachse.
Die beiden gleichen Teile müssen an der Symmetrieachse genau übereinander geklappt werden können. Sonst ist es keine Symmetrieachse.
LösungDie Null und die Raute haben beide jeweils zwei Symmetrieachsen. Wenn du die Figuren entlang ihrer Symmetrieachsen trennst, erhältst du zwei genau gleiche Teile. Diese Teile kannst du an der Symmetrieachse genau übereinanderklappen.
-
Welche Teile gehören zusammen? Untersuche.
TippsWenn du eine achsensymmetrische Figur in der Mitte faltest, sind die beiden entstandenen Teile genau gleich und überdecken sich.
Du musst die Teile auf der rechten Seite im Kopf drehen, um herauszufinden, zu welchem Teil auf der linken Seite sie passen.
LösungWenn du die Teile der achsensymmetrischen Figuren im Kopf so wie auf den Bildern zusammensetzt, erhältst du die kompletten Figuren. Die Symmetrieachse wird auch Spiegelachse genannt, da sich die genau gleichen Teile einer achsensymmetrischen Figur an ihr spiegeln.
-
Wie viele Symmetrieachsen haben die Figuren? Bestimme.
TippsDie Symmetrieachse trennt bei einer symmetrischen Figur die beiden Teile voneinander, die genau gleich sind.
Überlege, wo du in der Figur überall eine Linie ziehen kannst, an der du sie zusammenfalten kannst. Dabei müssen zwei gleiche Teile übereinandergefaltet werden können.
Lösung -
Welche Vierecke sind abgebildet? Bestimme.
TippsBei einem Drachenviereck sind jeweils zwei benachbarte Seiten gleich lang.
Bei einer Raute sind alle vier Seiten gleich lang.
Bei einem Rechteck sind die Ecken rechtwinklig und die gegenüberliegenden Seiten jeweils gleich lang und parallel. Das Quadrat ist eine Sonderform des Rechtecks.
LösungZu den Drachenvierecken gehören die drei Vierecke, bei denen jeweils zwei benachbarte Seiten gleich lang sind.
Unter den Vierecken gibt es zwei Rauten, bei denen alle vier Seiten gleich lang sind. Die gegenüberliegenden Winkel sind gleich groß, aber niemals rechtwinklig.
Bei einem Rechteck sind die gegenüberliegenden Seiten jeweils gleich lang und die vier Winkel rechtwinklig.
Das Quadrat ist ein Sonderfall des Rechtecks. Es hat vier gleich lange Seiten und vier rechte Winkel.
-
Bei welchen Figuren sind die Symmetrieachsen richtig eingezeichnet? Bestimme.
TippsDie Symmetrieachse trennt bei einer symmetrischen Figur die beiden Teile voneinander, die genau gleich sind.
LösungDie Symmetrieachse spiegelt eine achsensymmetrische Figur so, dass zwei gleiche Teile entstehen. In der Natur gibt es viele symmetrische Figuren zu sehen. Der Schmetterling und der Waschbär haben je eine Symmetrieachse, der Seestern und die Blume jeweils fünf.
2.575
sofaheld-Level
5.829
vorgefertigte
Vokabeln
10.214
Lernvideos
42.279
Übungen
37.352
Arbeitsblätter
24h
Hilfe von Lehrer*
innen

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Rechteck
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was ist eine Viertelstunde
- Prisma
- Mitternachtsformel
- Grundrechenarten Begriffe
- Dreiecksarten
- Quader
- Satz des Pythagoras
- Dreieck Grundschule
- Kreis
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen in Worten schreiben
- Meter
- Orthogonalität
- Schriftlich multiplizieren
- Brüche multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen berechnen
- Brüche addieren
- Kongruenz
- Exponentialfunktion
- Scheitelpunktform
- Punktsymmetrie
- Logarithmus
- Erwartungswert
- Skalarprodukt
- Primfaktorzerlegung
- Quadratische Ergänzung
- Zinseszins
- Geradengleichung aus zwei Punkten bestimmen
- Varianz
21 Kommentare
Alles Gute zum Geburtstag pegi🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂
suuuper ich verstehe hir alles und im Unterricht gar nichts
echt cool
Auch wider gutes Video Sofatutour!😉
Super Video war richtig cool so habe ich das Thema Achsensymestrie viel besser verstanden als im Unterricht, weiter so Sofatutour!😉😀😋