Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Das Trapez

Ein Trapez ist ein Viereck mit zwei parallelen Seiten. Erfahre mehr über die Eckpunkte, Winkel und spezielle Formen von Trapezen wie gleichschenklige oder rechtwinklige. Interessiert dich das? Dann lies weiter und entdecke noch mehr dazu!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 245 Bewertungen
Die Autor*innen
Avatar
Team Digital
Das Trapez
lernst du in der Unterstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse

Das Trapez Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Das Trapez kannst du es wiederholen und üben.
  • Beschrifte die Trapeze.

    Tipps

    Bei einem Parallelogramm sind je zwei Seiten parallel, aber nicht notwendig alle Seiten gleich lang.

    Eine Raute ist ein Parallelogramm mit vier gleich langen Seiten.

    Ein Trapez mit überkreuzten Seiten heißt verschränkt oder überschlagen.

    Lösung

    Alle Trapeze sind Vierecke. Ein allgemeines Trapez hat genau zwei parallele Seiten. Die vier Seiten sind im Allgemeinen verschieden lang. Neben diesem allgemeinen Trapez gibt es die hier gezeigten spezielleren Trapeze:

    • Ein Trapez heißt rechtwinklig, wenn es mindestens einen rechten Winkel besitzt. Wegen der Parallelität zweier Seiten hat ein solches Trapez notwendig einen weiteren rechten Winkel. Ein allgemeines rechtwinkliges Trapez hat vier verschieden lange Seiten.
    • Ein Trapez heißt symmetrisch, wenn es achsensymmetrisch ist. In diesem Fall sind je zwei Seiten gleich lang und die den parallelen Seiten anliegenden Winkel gleich groß.
    • Ein Trapez mit vier rechten Winkeln heißt Rechteck. Bei einem allgemeinen Rechteck sind je zwei Seiten gleich lang.
    • Ein Rechteck mit vier gleich langen Seiten ist ein Quadrat.
    • Sind bei einem Trapez alle vier Seiten gleich lang, aber die Winkel nicht notwendig alle gleich, so ist es eine Raute. Bei einer Raute sind je zwei gegenüberliegende Seiten parallel.
    • Ein Parallelogramm ist ein Trapez, bei dem die gegenüberliegenden Seiten jeweils parallel sind. Sie sind aber nicht notwendig gleich lang.
    • Bei einem verschränkten Trapez schneiden sich die beiden nicht parallelen Seiten zwischen den beiden parallelen Seiten.
  • Benenne die Eigenschaften von Trapezen.

    Tipps

    Ein Viereck kannst du durch eine Diagonale in zwei Dreiecke teilen. Die Innenwinkelsumme des Vierecks ist daher das Doppelte der Innenwinkelsumme eines Dreiecks.

    Es gibt kein Trapez, das genau einen rechten Winkel hat.

    Ein Quadrat ist auch eine Raute. Aber nicht jede Raute ist auch ein Quadrat.

    Lösung

    Trapezos Figuren sind allesamt Trapeze. Sie folgen daher den Gesetzen der Geometrie. Hier sind die korrekten Aussagen:

    • „Die Winkelsumme im Trapez ... beträgt $360^\circ$.“ Dies gilt sogar in jedem Viereck.
    • „Die Summe der Innenwinkel an nicht parallelen Seiten ... ist immer $180^\circ$.“ Diese Winkelsumme ergibt sich aus der Parallelität der beiden anderen Seiten. Sie gilt daher nur bei Trapezen.
    • „Ein rechtwinkliges Trapez ... hat zwei rechte Winkel.“ Ein Trapez heißt rechtwinklig, wenn es mindestens einen rechten Winkel besitzt. Wegen der Parallelität zweier Seiten hat es dann mindestens einen weiteren rechten Winkel.
    • „Ein nicht verschränktes Trapez mit vier gleich langen Seiten ... heißt Raute.“ Bei einer Raute sind alle vier Seiten gleich lang. Daraus folgt auch, dass gegenüberliegende Seiten parallel und gegenüberliegende Winkel gleich groß sind.
    • „Ein nicht verschränktes Trapez, bei dem gegenüberliegende Seiten gleich lang sind, ... heißt Parallelogramm.“ Sind zwei Seiten eines Vierecks parallel und die beiden anderen Seiten gegenüberliegend und gleich lang, so sind sie auch parallel. In diesem Falle ist das Viereck ein Parallelogramm.
  • Ordne die Eigenschaften der Figuren zu.

    Tipps

    Ein Trapez hat mindestens zwei parallele Seiten.

    Die mathematischen Symbole sind wie folgt definiert:

    • $\parallel$: parallel
    • $\nparallel$: nicht parallel
    • $\perp$: orthogonal
    • $=$: gleich
    • $\neq$: ungleich

    Bei einem symmetrischen Trapez sind gegenüberliegende Seiten gleich lang.

    Lösung

    Ein Trapez ist ein Viereck mit mindestens zwei parallelen Seiten. Die Seiten werden üblicherweise gegen den Uhrzeigersinn mit $a$, $b$, $c$ und $d$ bezeichnet. Bei einem Trapez ist daher $a \parallel c$ oder $b \parallel d$. Wir bezeichnen hier die parallelen Seiten immer mit $a$ und $c$.

    Ist zusätzlich $b \parallel d$, so ist das Trapez ein Parallelogramm. Sind dann noch alle vier Seiten gleich lang, d. h. $a=b=c=d$, so ist es eine Raute. Ein symmetrisches Trapez hat eine Symmetrieachse. Die gegenüberliegenden Seiten sind gleich lang, d. h. $a=c$ und $b=d$, aber im Allgemeinen sind einander anliegende Seiten verschieden lang, d. h. $a \neq b$. Nur bei einem symmetrischen Trapez sind die den parallelen Seiten anliegenden Winkel gleich groß, d. h. $\alpha =\beta$ und $\gamma =\delta$.

  • Charakterisiere die Trapeze.

    Tipps

    Die Diagonalen eines Vierecks mit den Eckpunkten $A$, $B$, $C$ und $D$ sind die Strecken $\overline{AC}$ und $\overline{BD}$.

    Überlege, welche die möglichen rechten Winkel in einem allgemeinen rechtwinkligen Trapez sind.

    Lösung

    Ein allgemeines Trapez hat genau zwei parallele Seiten. Die beiden übrigen Seiten sind nicht parallel. Die vier Seiten eines allgemeinen Trapezes haben je verschiedene Längen. Die Winkelsumme in einem Trapez beträgt immer $360^\circ$. Die Summe der anliegenden Winkel einer nicht parallelen Seite ist $180^\circ$. Ist $a \parallel c$, so gilt die Gleichung:

    $\alpha + \delta = \beta + \gamma$

    Sind die nicht parallelen Seiten eines Trapezes gleich lang, so ist das Trapez achsensymmetrisch. In diesem Falle gilt für die Winkel:

    $\alpha= \beta$ und $\gamma = \delta$

    Bei einem verschränkten Trapez liegen die Diagonalen $\overline{AC}$ und $\overline{BD}$ außerhalb der Trapezfläche. Teilt der Schnittpunkt der nicht parallelen Seiten diese Seiten in der Mitte, so ist das Trapez punktsymmetrisch.

    Ein Trapez heißt rechtwinklig, wenn es mindestens einen rechten Winkel besitzt. Ist in einem Trapez $a \parallel c$ und $\beta = 90^\circ$, ist auch $\gamma=90^\circ$. Ist zusätzlich $\alpha = 90^\circ$ und damit $\delta = 90^\circ$, so sind alle Winkel des Trapezes rechte Winkel.

  • Zeige auf, welche Figuren Trapeze sind.

    Tipps

    Jedes Trapez ist ein Viereck.

    Bei einem Trapez sind zwei Seiten parallel.

    Nicht jede Figur mit parallelen Seiten ist ein Trapez.

    Lösung

    Jedes Trapez ist ein Viereck. Manche der Figuren sind aber Fünfecke und können daher keine Trapeze sein. Ein verschränktes Trapez sieht auf den ersten Blick nicht wie ein Viereck aus, da sich die beiden nicht parallelen Seiten in einem weiteren Punkt schneiden. Dieser gehört aber nicht zu den Ecken des Trapezes.

    Ein Parallelogramm ist ein spezielles Trapez, bei dem je zwei gegenüberliegende Seiten parallel sind. Ein Trapez heißt symmetrisch, wenn es eine Symmetrieachse hat. Sie teilt das Trapez in zwei gleich große Flächen.

    Eine Raute ist ein nicht verschränktes Trapez, bei dem alle vier Seiten gleich lang sind. Ein Drachen sieht einer Raute ähnlich, hat aber im Allgemeinen keine parallelen Seiten.

  • Analysiere die Aussagen.

    Tipps

    Überlege, welche verschiedenen Trapeze punktsymmetrisch sind.

    Lösung

    Folgende Aussagen sind richtig:

    • „Sind bei einem Trapez zwei gegenüberliegende Winkel gleich groß, so sind auch die beiden anderen gegenüberliegenden Winkel gleich groß.“ Diese Aussage folgt aus der Beobachtung, dass die Summe der einer nicht parallelen Seite anliegenden Winkel $180^\circ$ beträgt. Sind nämlich $\alpha + \delta = 180^\circ = \beta + \gamma$ und $\alpha = \gamma$, so ist $\gamma + \delta = \beta + \gamma$ und daher $\beta = \delta$.
    • „Ein Trapez mit vier gleich langen Seiten ist eine Raute oder ein verschränktes Trapez.“ Jedes nicht verschränkte Trapez, das keine Raute ist, hat verschieden lange Seiten. Bei einem verschränkten Trapez können auch die Seiten gleich lang sein, ohne dass das Trapez eine Raute ist.
    • „Ist bei einem Parallelogramm die Summe gegenüberliegender Winkel $180^\circ$, so ist es ein Rechteck.“ Bei einem Parallelogramm ist immer $\alpha + \delta = 180^\circ = \beta + \gamma$ und $\alpha + \beta = 180^\circ =\gamma + \delta$. Ist auch $\alpha + \gamma =180^\circ= \beta + \delta$, so folgt daraus $(180^\circ - \gamma) + \delta = 180^\circ$, also $\gamma = \delta$. Wegen $\gamma + \delta = 180^\circ$ ist also $\gamma = \delta = 90^\circ$. Analog findet man $\alpha = \beta = 90^\circ$.
    • „Ein punktsymmetrisches, nicht verschränktes Trapez ist ein Parallelogramm.“ Wird bei einer Drehung um $180^\circ$ jede Seite eines Trapezes auf ihre gegenüberliegende Seite abgebildet, so ist das Trapez entweder verschränkt oder ein Parallelogramm.
    Folgende Aussagen sind falsch:

    • „Sind bei einem Trapez je zwei Seiten gleich lang, so ist es ein Parallelogramm.“ Auch verschränkte Trapeze können Paare gleich langer Seiten haben.
    • „Es gibt kein rechtwinkliges verschränktes Trapez.“ In dem Bild siehst du ein rechtwinkliges verschränktes Trapez.
    • „Ist ein Trapez punktsymmetrisch, so ist es ein verschränktes Trapez.“ Parallelogramme sind auch punktsymmetrisch, aber nicht verschränkt.