Trigonometrie – Einführung
Trigonometrie ist ein Bereich der Geometrie, der sich mit den Seitenverhältnissen in rechtwinkligen Dreiecken beschäftigt. Mithilfe von Formeln wie Sinus, Cosinus und Tangens kannst du Seitenlängen und Winkel berechnen. Klingt spannend? Dann lies weiter, um noch mehr darüber zu erfahren!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Trigonometrie – Einführung
Trigonometrie – Definition
Die Trigonometrie gehört in der Mathematik zur Geometrie. Aber was genau ist Trigonometrie? Schauen wir uns dazu das Wort selbst genauer an. Es setzt sich zusammen aus Trigon und metrie. Beide Begriffe stammen aus dem Griechischen. Trigon bedeutet Dreieck und metrie deutet darauf hin, dass etwas gemessen werden soll.
Es geht also um das Vermessen von Dreiecken.
Genauer geht es in der Trigonometrie um Seitenverhältnisse von rechtwinkligen Dreiecken.
Trigonometrie – Dreieck
Die Grundgrößen, die man mithilfe der Trigonometrie an einem Dreieck beschreiben kann, sind:
- die Seitenlängen $a,b,c$
- die Winkel $\alpha, \beta, \gamma$
Zwei Dreiecke heißen ähnlich, wenn sie die gleichen Winkel haben. Solche Dreiecke haben jeweils die gleichen Seitenverhältnisse. Aussagen über solche Seitenverhältnisse haben wir bisher mithilfe der Strahlensätze getroffen.
Die beiden Dreiecke in der Abbildung sind ähnlich zueinander, da sie die gleichen Winkel haben. Daher ist das Verhältnis der Seitenlängen der blauen Seite zur grünen Seite bei beiden Dreiecken gleich: $4{,}5:6 = 0{,}75$ und $3:4 = \frac{3}{4} = 0{,}75$.
Seitenverhältnisse können aber nicht nur über die Strahlensätze beschrieben werden. Sie können auch mit den Winkeln im Dreieck in Verbindung gebracht werden. Dazu dient die Trigonometrie.
Trigonometrie – Formeln
In der Trigonometrie geht es zunächst nur um rechtwinklige Dreiecke. Einen wichtigen Satz über rechtwinklige Dreiecke kennst du bereits: den Satz des Pythagoras. Er lautet:
$a^{2} + b^{2} = c^{2}$
Wenn du zwei Seiten eines rechtwinkligen Dreiecks kennst, kannst du also die dritte berechnen.
Trigonometrie – Winkel
Ein weiterer Satz ist der Winkelsummensatz. Kennst du in einem rechtwinkligen Dreieck außer dem rechten Winkel auch die Winkelgröße eines weiteren Winkels, so kannst du mithilfe der Innenwinkelsumme die Winkelgröße des dritten Winkels berechnen. Sind zum Beispiel $\gamma$ als rechter Winkel und $\beta$ vorgegeben, so kannst du $\alpha$ mit folgender Formel berechnen:
$\alpha = 180^\circ - \beta - \gamma$
Trigonometrie – Sinus
Der Sinus eines Winkels ist der Name für ein Seitenverhältnis im rechtwinkligen Dreieck.
Bezeichnen wir den rechten Winkel mit $\gamma$, so liegt dem Winkel $\gamma$ die Hypotenuse $c$ des Dreiecks gegenüber. Dem Winkel $\beta$ liegt die Kathete $b$ gegenüber. Die andere Kathete $a$ liegt an dem Winkel $\beta$.
Weil die Kathete $b$ dem Winkel $\beta$ gegenüberliegt, nennt man sie die Gegenkathete von $\beta$. Die Kathete $a$ ist entsprechend die Ankathete des Winkels $\beta$. Umgekehrt ist $b$ die Ankathete von $\alpha$ und $a$ die Gegenkathete von $\alpha$.
In jedem rechtwinkligen Dreieck ist der Sinus eines Winkels
$\text{Sinus}(\beta) = \dfrac{\text{Gegenkathete (von }\beta\text{)}}{\text{Hypotenuse}}$
Die folgende Abbildung zeigt ein rechtwinkliges Dreieck mit den oben beschriebenen Bezeichnungen für Seiten und Winkel:
Weil alle ähnlichen Dreiecke die gleichen Seitenverhältnisse haben, hängt der Sinus des Winkels als Seitenverhältnis gar nicht von den Seiten, sondern nur von dem Winkel ab.
Man schreibt den Sinus des Winkels $\beta$ abkürzend auch so:
$\sin(\beta) = \dfrac{b}{c}$
Trigonometrie – Cosinus
Der Cosinus eines Winkels ist der Quotient aus Ankathete und Hypotenuse, also:
$\text{Cosinus}(\beta) = \dfrac{\text{Ankathete (von }\beta\text{)}}{\text{Hypotenuse}}$
Das können wir in Kurzform auch so schreiben:
$\cos(\beta) = \dfrac{a}{c}$
Trigonometrie – Tangens
Aber auch der Quotient aus den beiden Katheten ist eine trigonometrische Funktion, nämlich der Tangens:
$\text{Tangens}(\beta) = \dfrac{\text{Gegenkathete (von }\beta\text{)}}{\text{Ankathete (von }\beta\text{)}}$
Oder kurz:
$ \tan(\beta) = \dfrac{b}{a} $
Bildergalerie zum Thema: Trigonometrie – Einführung
Trigonometrie – Beispiel
In einem gegebenen rechtwinkligen Dreieck mit $\gamma = 90^\circ$ sei der Winkel
Damit könenn wir den fehlenden Winkel $\alpha$ ausrechnen:
$\alpha = 180^\circ - \beta - \gamma = 180^\circ - 37^\circ -90^\circ = 53^\circ$
In jedem Dreieck mit diesen Winkelgrößen ist das Verhältnis der Seiten $b$ und $c$ gleich. Dieses Seitenverhältnis ist der Sinus des Winkels $37^\circ$. Du kannst das Seitenverhältnis bestimmen, indem du ein solches Dreieck zeichnest und die Seiten ausmisst.
Du kannst den Sinus des Winkels $\beta$ als Seitenverhältnis der gemessenen Gegenkathete und Hypotenuse darstellen. Mit einem Taschenrechner kannst du den Sinus aber auch direkt aus $\beta = 37^\circ$ berechnen. Das Ergebnis ist:
$\sin(37^\circ) \approx 0{,}6$
Trigonometrie – Zusammenfassung
- Die Trigonometrie ist ein Teilgebiet der Geometrie.
- In der Trigonometrie geht es um Seitenverhältnisse in rechtwinkligen Dreiecken.
- Mit den Formeln der Trigonometrie können Seitenlängen und Winkelgrößen berechnet werden:
Sinus | Cosinus | Tangens |
---|---|---|
$\sin(\beta) = \dfrac{b}{c}$ | $\cos(\beta) = \dfrac{a}{c}$ | $\tan(\beta) = \dfrac{b}{a}$ |
- $a\text{~:~\,~Ankathete (von }\beta\text{)}$
- $b\text{~:~\,~Gegenkathete (von }\beta\text{)}$
- $c\text{~:~\,~Hypotenuse}$
Trigonometrie – Übungen
Häufig gestellte Fragen zum Thema Trigonometrie
Transkript Trigonometrie – Einführung
Rechtwinklige Dreiecke, Hypotenuse, Katheten, Sinus, Cosinus und Tangens.
Wofür braucht man überhaupt den ganzen Kram?
In der Astronomie. Wow.
Akustik und Optik, das scheint ja schon wichtig für Naturwissenschaften zu sein.
Was, GPS funktioniert auf der Grundlage von Trigonometrie?
Na, dann scheint sich der Blick auf eine kurze „Einführung in die Trigonometrie“ ja doch nochmal zu lohnen.
Fangen wir mit dem Begriff selbst an:
Was bedeutet Trigonometrie eigentlich?
Das Wort setzt sich aus zwei Bezeichnungen zusammen.
„Trigon“ kommt aus dem Griechischen und bedeutet Dreieck.
Die Wortendung „metrie“ deutet zusätzlich darauf hin, dass etwas gemessen werden soll.
Es geht also um die Messung von Dreiecken.
Was genau können wir an diesen denn überhaupt messen?
Nun, neben den drei Seitenlängen, können wir auch die Größe der drei Innenwinkel bestimmen.
Es gibt also Sechs grundlegende Größen im Dreieck, die wir messen können.
Haben wir einige davon gegeben, hilft uns die Trigonometrie dabei, die Größe der übrigen herauszufinden.
Und es wird sogar noch etwas einfacher:
Die Trigonometrie betrachtet zunächst nur eine spezielle Art von Dreiecken, nämlich nur die, die einen rechten Winkel besitzen.
Rechtwinklige Dreiecke?
Kennen wir da nicht schon so eine Formel zu den Seitenlängen?
Ach ja, da war was: Der Satz des Pythagoras!
„a Quadrat plus b Quadrat gleich c Quadrat“.
Mit Hilfe dieses Satzes können wir eine unbekannte Seitenlänge in einem rechtwinkligen Dreieck berechnen, wenn wir die beiden anderen Seitenlängen kennen.
Bei den Winkeln hilft uns der Winkelsummensatz.
Dieser besagt, dass die drei Winkel in einem Dreieck zusammen immer hundertachtzig Grad betragen.
Kennen wir zwei Winkel, können wir so den dritten ganz einfach berechnen.
Doch welche Beziehung besteht zwischen Seitenlängen und Winkelgrößen?
Hier kommt die Trigonometrie ins Spiel, quasi als eine Art „Dolmetscher“.
Sie ermöglicht uns, von Seitenlängen auf Winkelgrößen zu schließen und andersherum.
Dafür wählen wir den Winkel Alpha im Dreieck als Ausgangspunkt.
Außerdem haben wir bereits den rechten Winkel gegeben.
Auf dieser Grundlage können wir den Dreiecksseiten nun spezielle Bezeichnungen geben:
Die Seite, die dem rechten Winkel gegenüberliegt, nennen wir im Allgemeinen Hypotenuse.
Die beiden Seiten, die den rechten Winkel einschließen, heißen Katheten.
Die Kathete, die auch unseren Winkel Alpha einschließt, nennen wir Ankathete, da sie dem Winkel anliegt.
Die andere Kathete nennen wir Gegenkathete.
Sie liegt dem Winkel Alpha gegenüber.
Mit Hilfe dieser Bezeichnungen können wir jetzt die trigonometrischen Funktionen definieren:
Die erste Funktion dieser Art, die wir uns anschauen ist der Sinus.
Der Sinus von Alpha ist das Verhältnis von Gegenkathete zu Hypotenuse.
Bei unserem Dreieck entspricht das der Seitenlänge von a geteilt durch die Seitenlänge von b.
Den Cosinus des Winkels Alpha erhalten wir, wenn wir Ankathete durch Hypotenuse teilen.
Sprich b geteilt durch c.
Der Tangens von Alpha ist definiert als Gegenkathete durch Ankathete.
Das entspricht in unserem Fall a geteilt durch b.
Die trigonometrischen Funktionen definieren also die Seitenverhältnisse im rechtwinkligen Dreieck.
Diese werden so mit den Winkelgrößen verknüpft.
Um mit Sinus, Cosinus und Tangens im rechtwinkligen Dreieck rechnen zu können, brauchen wir neben dem rechten Winkel lediglich einen weiteren Winkel und eine Seitenlänge.
Die übrigen Seitenlängen zu ermitteln ist dann kein Problem mehr.
Mit Hilfe der trigonometrischen Funktionen können wir jedoch noch viel mehr erreichen, als bloß die Seitenlängen und Winkelgrößen in rechtwinkligen Dreiecken zu bestimmen.
Wie genau das Ganze funktioniert, klären wir aber ein andermal.
Die Mathestunde ist für heute erstmal beendet.
Aha.
Da wurde ja auch schon ein neues Anwendungsgebiet für die Trigonometrie gefunden. Man kann nie wissen wozu Mathe noch so gut sein kann.
Trigonometrie – Einführung Übung
-
Vervollständige die Gleichungen.
TippsLösungDer Sinus eines Winkels ist das Längenverhältnis von Gegenkathete zu Hypotenuse:
$~\sin(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Hypotenuse}}$
Da die Gegenkathete mit $a$ und die Hypotenuse mit $c$ beschriftet ist, gilt:
$~\sin(\alpha)=\frac{a}{c}$Der Kosinus eines Winkels ist das Längenverhältnis von Ankathete zu Hypotenuse:
$~\cos(\alpha)=\frac{~\text{Ankathete}}{~\text{Hypotenuse}}$
Da die Ankathete mit $b$ und die Hypotenuse mit $c$ beschriftet ist, gilt:
$~\cos(\alpha)=\frac{b}{c}$Der Tangens eines Winkels ist das Längenverhältnis von Gegenkathete zu Ankathete:
$~\tan(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Ankathete}}$
Da die Gegenkathete mit $a$ und die Ankathete mit $b$ beschriftet ist, gilt:
$~\tan(\alpha)=\frac{a}{b}$ -
Gib an, welche mathematischen Größen durch die jeweilige Formel verknüpft werden.
TippsDer Sinus von $\alpha$ ist als das Längenverhältnis von Gegenkathete zu Hypotenuse definiert.
Die Hypotenuse ist die längste Seite im Dreieck.
Mithilfe des Satzes des Pythagoras kann man mit zwei gegebenen Seiten im rechtwinkligen Dreieck die dritte Seite ermitteln.
LösungDer Winkelsummensatz gilt in allen Dreiecken und besagt, dass die Summe aller Innenwinkel $180^\circ$ beträgt:
$\alpha + \beta + \gamma = 180^\circ$
Es werden also die Größen $\alpha$, $\beta$ und $\gamma$ verknüpft.Der Satz des Pythagoras gilt nur im rechtwinkligen Dreieck. Er besagt, dass die Summe der Kathetenquadrate gleich dem Hypotenusenquadrat ist:
$a^2+b^2=c^2$
Es werden also die Größen $a$, $b$ und $c$ verknüpft.Der Sinus eines Winkels gibt das Längenverhältnis von Gegenkathete zur Hypotenuse an:
$~\sin(\alpha)=\frac{a}{c}$
Es werden also die Größen $\alpha$, $a$ und $c$ verknüpft.Der Kosinus eines Winkels gibt das Längenverhältnis von Ankathete zur Hypotenuse an:
$~\cos(\alpha)=\frac{b}{c}$
Es werden also die Größen $\alpha$, $b$ und $c$ verknüpft.Der Tangens eines Winkels gibt das Längenverhältnis von Gegenkathete zur Ankathete an:
$~\tan(\alpha)=\frac{a}{b}$
Es werden also die Größen $\alpha$, $a$ und $b$ verknüpft. -
Entscheide, welche der Aussagen richtig sind.
TippsDer Satz des Pythagoras lautet für das hier abgebildete Dreieck mit $\gamma=90^\circ$ in Kurzform:
$a^2+b^2=c^2$
Die beiden Katheten schließen den rechten Winkel ein.
Dem rechten Winkel liegt immer die längste Seite des Dreiecks gegenüber.
LösungDie folgenden Aussagen sind richtig:
- Der Satz des Pythagoras verknüpft die Seitenlängen in einem rechtwinkligen Dreieck.
- Sinus, Kosinus und Tangens sind Längenverhältnisse.
Die folgenden Aussagen sind falsch:
- Der Winkelsummensatz gilt nur in rechtwinkligen Dreiecken.
- Die Seite, die dem rechten Winkel gegenüberliegt, heißt Gegenkathete.
-
Entscheide, ob Sinus, Kosinus und Tangens direkt angewendet werden können.
TippsDie Hypotenuse liegt immer dem rechten Winkel gegenüber.
LösungSinus, Kosinus und Tangens stellen Längenverhältnisse im rechtwinkligen Dreieck dar:
- $~\sin(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Hypotenuse}}$
- $~\cos(\alpha)=\frac{~\text{Ankathete}}{~\text{Hypotenuse}}$
- $~\tan(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Ankathete}}$
Die beiden roten Dreiecke sind rechtwinklig, daher können wir Sinus, Kosinus und Tangens hier anwenden.
Das gelbe Dreieck hat drei gleich lange Seiten. Wir nennen es daher gleichseitig. Im gleichseitigen Dreieck sind auch alle Innenwinkel gleich groß, nämlich $60^\circ$. Es ist somit nicht rechtwinklig. Wir können Sinus, Kosinus und Tangens hier nicht direkt anwenden. Nur durch das Einzeichnen von Hilfslinien könnten wir rechtwinklige Dreiecke erzeugen.
Gleiches gilt für das grüne Rechteck: Da dies kein rechtwinkliges Dreieck ist, können wir Sinus, Kosinus und Tangens nicht direkt anwenden. Hier könnten wir jedoch ebenfalls Hilfslinien einzeichnen, um rechtwinklige Dreiecke zu erzeugen.
-
Bestimme Hypotenuse, Gegenkathete und Ankathete.
TippsDie Hypotenuse ist immer die längste Seite im Dreieck und liegt dem rechten Winkel gegenüber.
Seite $a$ liegt gegenüber von Winkel $\alpha$: Es handelt sich um eine Kathete.
Seite $b$ liegt an dem Winkel $\alpha$.
LösungIn einem rechtwinkligen Dreieck gelten folgende Bezeichnungen:
Die Hypotenuse liegt dem rechten Winkel gegenüber. Sie ist auch immer die längste Seite im Dreieck.
Die beiden Seiten, die den rechten Winkel einschließen, heißen Katheten.
Genauer nennt man die Seite, die dem betrachteten Winkel gegenüberliegt, Gegenkathete. Die Seite, die dem betrachteten Winkel anliegt, heißt Ankathete. -
Stelle die Gleichung für Sinus, Kosinus und Tangens in dem rechtwinkligen Dreieck auf.
TippsDie Hypotenuse ist immer die längste Seite im Dreieck. Welche der anderen beiden Seiten die An- und Gegenkathete sind, hängt davon ab, welchen Winkel wir betrachten.
Der Sinus eines Winkels ist definiert als Gegenkathete geteilt durch Hypotenuse.
- $~\sin(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Hypotenuse}}$
- $~\cos(\alpha)=\frac{~\text{Ankathete}}{~\text{Hypotenuse}}$
- $~\tan(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Ankathete}}$
LösungBetrachten wir in dem gegebenen Dreieck den Winkel $\alpha$, so ist die Seite $k$ die Gegenkathete, die Seite $j$ die Ankathete und die Seite $i$ die Hypotenuse.
Wir betrachten nun die Definition von Sinus, Kosinus und Tangens und setzen entsprechend ein:$~\sin(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Hypotenuse}}=\frac{k}{i}$
$~\cos(\alpha)=\frac{~\text{Ankathete}}{~\text{Hypotenuse}}=\frac{j}{i}$
$~\tan(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Ankathete}}=\frac{k}{j}$
Betrachten wir in dem gegebenen Dreieck den Winkel $\beta$, so ist die Seite $j$ die Gegenkathete, die Seite $k$ die Ankathete und die Seite $i$ die Hypotenuse.
Wir betrachten wieder die Definition von Sinus, Kosinus und Tangens und setzen entsprechend ein:$~\sin(\beta)=\frac{~\text{Gegenkathete}}{~\text{Hypotenuse}}=\frac{j}{i}$
$~\cos(\beta)=\frac{~\text{Ankathete}}{~\text{Hypotenuse}}=\frac{k}{i}$
$~\tan(\beta)=\frac{~\text{Gegenkathete}}{~\text{Ankathete}}=\frac{j}{k}$
Trigonometrie – Einführung
Sinus – Definition
Cosinus und Tangens – Definition
Trigonometrische Berechnungen am rechtwinkligen Dreieck
Sinus, Cosinus und Tangens – Anwendungsaufgaben
Hypotenuse berechnen
Sinus und Cosinus am Einheitskreis
Tangens am Einheitskreis
Flächeninhalt eines Dreiecks als Funktion eines Innenwinkels
Sinus, Cosinus und Tangens – Längenbestimmung im Dreieck
Flächenformel des regelmäßigen n-Ecks
Trigonometrischer Pythagoras
Sinus, Cosinus und Tangens am Einheitskreis – Beispiele
8.761
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.361
Lernvideos
35.193
Übungen
32.813
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
- Brüche Addieren
- Kongruenz
- Exponentialfunktion
- Exponentialfunktion Beispiel