Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Strahlensätze

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.8 / 142 Bewertungen
Die Autor*innen
Avatar
Team Digital
Strahlensätze
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Strahlensätze Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Strahlensätze kannst du es wiederholen und üben.
  • Berechne die Länge mit dem 1. Strahlensatz.

    Tipps

    Berechne die Länge der Strecke $\overline{SB'}$.

    Setze die Längen der Strecken in die Formel ein.

    Setze in der zweiten Zeile der Rechnung die Längen der Strecken aus der ersten Zeile ein.

    Lösung

    Mit dem Strahlensatz kannst du in einer Strahlensatzfigur die Länge einer Strecke aus drei anderen Strecken berechnen. In der Figur im Bild kannst du den $1.$ Strahlensatz verwenden. Um die passende Gleichung zu finden, musst du zuerst herausfinden, welche Gleichung die unbekannte Länge und die bekannten Längen enthält. Der erste Strahlensatz wird durch folgende drei Gleichungen ausgedrückt:

    $ \begin{array}{rcl} \frac{\overline{SA}}{\overline{SA'}} &=& \frac{\overline{SB}}{\overline{SB'}} \\ && \\ \frac{\overline{SA}}{\overline{AA'}} &=& \frac{\overline{SB}}{\overline{BB'}} \\ && \\ \frac{\overline{SA'}}{\overline{AA'}} &=& \frac{\overline{SB'}}{\overline{BB'}} \end{array} $

    Hier kommt nur die erste Gleichung infrage, denn die beiden anderen Gleichungen enthalten entweder $\overline{SA}$ gar nicht oder zusätzlich die unbekannte Strecke $\overline{AA'}$.

    Du kannst hier die erste Gleichung nach der Länge der unbekannten Strecke $\overline{SA}$ umstellen. Dazu musst du noch die Länge der Strecke $\overline{SB'}$ berechnen. Diese ist die Summe der Längen der Strecken $\overline{SB}$ und $\overline{BB'}$. Es ist also:

    $\overline{SB'} = \overline{SB} + \overline{BB'} = 20+25 =45$

    Damit erhältst du für die Länge der Strecke $\overline{SA}$ die folgende Rechnung:

    $ \begin{array}{rcl} \overline{SA} &=& \frac{\overline{SB}}{\overline{SB'}} \cdot \overline{SA'} \\ && \\ &=& \frac{20 \cdot 49}{45} \\ && \\ &=& \frac{980}{45} \\ && \\ &\approx& 21,78 \end{array} $

  • Zeige die Seiten in den Strahlensätzen.

    Tipps

    Die Strecken auf den beiden Parallelen kommen nur im $2.$ Strahlensatz vor.

    In den Gleichungen des $1.$ Strahlensatzes stehen die Punkte $A$ und $B$ bzw. $A'$ und $B'$ stets auf verschiedenen Seiten.

    In dieser Figur besagt der $2.$ Strahlensatz:

    $\frac{14}{32,9} = \frac{20}{47}$

    Lösung

    Die beiden Strahlensätze vergleichen die Längenverhältnisse verschiedener Strecken in einer Strahlensatzfigur. Die Strecken in den Gleichungen kannst du in der Strahlensatzfigur identifizieren.

    Der $1.$ Strahlensatz lässt sich durch folgende Gleichungen ausdrücken:

    $ \begin{array}{rcl} \frac{\overline{SA}}{\overline{SA'}} &=& \frac{\overline{SB}}{\overline{SB'}} \\ && \\ \frac{\overline{SA}}{\overline{AA'}} &=& \frac{\overline{SB}}{\overline{BB'}} \\ && \\ \frac{\overline{SA'}}{\overline{AA'}} &=& \frac{\overline{SB'}}{\overline{BB'}} \end{array} $

    Der $2.$ Strahlensatz kann analog durch folgende beiden Gleichungen ausgedrückt werden:

    $ \begin{array}{rcl} \frac{\overline{AB}}{\overline{A'B'}} &=& \frac{\overline{SA}}{\overline{SA'}} \\ && \\ \frac{\overline{AB}}{\overline{A'B'}} &=& \frac{\overline{SB}}{\overline{SB'}} \\ \end{array} $

    Die fehlenden Strecken in der Gleichung für den $1.$ Strahlensatz sind $\overline{SA'}$ ($1.$ Gleichung) und $\overline{BB'}$ ($2.$ Gleichung). In der dritten Gleichung fehlen noch einmal dieselben beiden. Für den $2.$ Strahlensatz sind die Strecken $\overline{SB}$ ($2.$ Gleichung) und $\overline{A'B'}$ (in beiden Gleichungen) gesucht.

  • Berechne die Länge mit einem Strahlensatz.

    Tipps

    Der $1.$ Strahlensatz vergleicht die Längenverhältnisse einander entsprechender Strecken auf den beiden Strahlen. Auf der einen Seite der Gleichung stehen Längen des einen Strahls, auf der anderen Seite entsprechende Längen des anderen Strahls.

    Für die Längen der parallelen Strecken gilt z. B. die Gleichung:

    $\frac{\overline{AB}}{\overline{A'B'}} = \frac{\overline{SB}}{\overline{SB'}}$

    In dieser Strahlensatzfigur gilt:

    $\frac{\overline{SA}}{49} = \frac{20}{45}$

    Lösung

    Mithilfe der Strahlensätze kannst du die Länge einer Strecke in einer Strahlensatzfigur aus drei anderen Strecken berechnen. Die Formeln der Strahlensätze sind jeweils Gleichungen für Längenverhältnisse, die du nach der gesuchten Länge auflösen kannst. Dazu musst du zuerst eine passende Gleichung finden, in der die drei gegebenen (oder daraus abgeleitete) und die gesuchte Strecke vorkommen.

    Im Bild siehst du die Strahlensatzfiguren von oben mit den jeweils fehlenden Strecken. Hier ist die Berechnung dazu:

    Beispiel 1:

    Gesucht ist die Länge $\overline{SB'}$, vorgegeben sind die Längen $\overline{SA}= 20$, $\overline{AA'}= 10$ und $\overline{SB}= 30$. Du kannst die Länge $\overline{SA'} = \overline{SA} + \overline{AA'} = 20+10=30$ daraus berechnen. Dann kannst du die Formel

    $\frac{\overline{SA}}{\overline{SA'}} = \frac{\overline{SB}}{\overline{SB'}}$

    aus dem $1.$ Strahlensatz nach $\overline{SB'}$ umstellen und erhältst:

    $\overline{SB'} = \frac{\overline{SB} \cdot \overline{SA'}}{\overline{SA}} = \frac{30 \cdot 30}{20} = 45$

    Beispiel 2:

    Gesucht ist hier die Strecke $\overline{SA}$, vorgegeben sind die Strecken $\overline{SB}=35$, $\overline{BB'} = 7$ und $\overline{AA'}=8$. Aus dem $1.$ Strahlensatz verwendest du die Gleichung

    $\frac{\overline{SA}}{\overline{AA'}} = \frac{\overline{SB}}{\overline{BB'}}$

    Durch Umstellen nach $\overline{SA}$ erhältst du:

    $\overline{SA}= \frac{\overline{SB} \cdot \overline{AA'}}{\overline{BB'}} = \frac{35 \cdot 8}{7} = 40$

    Beispiel 3:

    Vorgegeben sind hier die Strecken $\overline{SA}= 30$, $\overline{SA'}= 36$ und $\overline{AB}= 35$, gesucht ist die Strecke $\overline{A'B'}$. Die Gleichung

    $\frac{\overline{AB}}{\overline{A'B'}} = \frac{\overline{SA}}{\overline{SA'}}$

    aus dem $2.$ Strahlensatz kannst du nach $\overline{A'B'}$ auflösen und erhältst:

    $\overline{A'B'} = \frac{35 \cdot 36}{30} = 42$

    Beispiel 4:

    Hier sind die Strecken $\overline{SA}= 15$, $\overline{AA'}= 5$ sowie $\overline{A'B'}= 28$ und die Strecke $\overline{AB}$ ist gesucht. Du kannst die Gleichung

    $\frac{\overline{AB}}{\overline{A'B'}} = \frac{\overline{SA}}{\overline{SA'}}$

    aus dem $2.$ Strahlensatz nach $\overline{AB}$ auflösen. Für die Rechnung musst du noch die Strecke $\overline{SA'} = \overline{SA} + \overline{AA'} = 15+5=20$ verwenden. Du erhältst dann:

    $\overline{AB} = \frac{\overline{A'B'} \cdot \overline{SA}}{\overline{SA'}} = \frac{28 \cdot 15}{20} = 21$

    Beispiel 5:

    In dieser Strahlensatzfigur sind die Strecken $\overline{SB}= 19$, $\overline{SB'}= 57$ und $\overline{A'B'}= 51$ vorgegeben, die Strecke $\overline{AB}$ ist gesucht. Du kannst hier die Gleichung

    $\frac{\overline{AB}}{\overline{A'B'}} = \frac{\overline{SB}}{\overline{SB'}}$

    aus dem $2.$ Strahlensatz nach $\overline{AB}$ auflösen und erhältst:

    $\overline{AB} = \frac{\overline{SB} \cdot \overline{A'B'}}{\overline{SB'}} = \frac{19 \cdot 51}{57} = 17$

  • Bestimme die gesuchten Längen mithilfe des Strahlensatzes.

    Tipps

    Die Strecken auf den Parallelen kommen in den Gleichungen des $1.$ Strahlensatzes nicht vor.

    Der Berg ist im selben Verhältnis höher als der Kirchturm, wie er weiter entfernt ist als der Kirchturm.

    Lösung

    Die beiden Strahlensätze lassen sich in verschiedenen Situationen anwenden, in denen du die Länge einer Strecke aus drei anderen Strecken berechnen willst. Dazu müssen die Strecken bestimmte Bedingungen erfüllen:

    1. Sie müssen zu einer Strahlensatzfigur aus zwei Strahlen mit gemeinsamem Scheitel und zwei diese Strahlen schneidenden Parallelen gehören.
    2. Die Strecken müssen zueinander passen, sodass sich eine der Gleichungen aus den Strahlensätzen nach der unbekannten Strecke auflösen lässt und auf der anderen Seite nur $3$ bekannte Strecken stehen.
    In beiden Anwendungen dieser Aufgabe verwendest du den $2.$ Strahlensatz, denn berechnet wird jeweils eine Länge auf einer der Parallelen und diese kommen im $1.$ nicht vor.

    Es gilt:

    • Die Höhe des Kirchturms in der ersten Figur entspricht der Länge der Strecke $\overline{A'B'}$.
    • Die Breite des Flusses im $2.$ Beispiel entspricht der Länge der Strecke $\overline{AB}$.
    Beispiel 1:

    Der Strahlensatz macht eine Aussage über die Längenverhältnisse, daher kannst du mit dem Strahlensatz auch Folgerungen über Längenverhältnisse ziehen: Der Betrachter steht am Scheitelpunkt $S$ der Strahlensatzfigur. Die vom Betrachter ausgehende Horizontale enthält die Punkte $A$ beim Fußpunkt des Kirchturms und $A'$ am Fuß des Bergs. Die Blicklinie verläuft vom Betrachter über die Kirchturmspitze $B$ zum Gipfel $B'$ des Bergs. Ist der Abstand zwischen Betrachter und Kirchturm dreimal so groß wie der zwischen Kirchturm und Berg, so ist:

    • $\frac{SA}{AA'} = 3$ und $\frac{SA'}{AA'} = 4$ und $\frac{SA'}{SA} = \frac{4}{3}$
    Aus der Gleichung:
    • $\frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{SA'}}{\overline{SA}} = \frac{4}{3}$
    kannst du ablesen, dass der Berg um $\frac{1}{3}$ höher ist als der Kirchturm.

    Ist $\overline{AA'}=15~\text{km}$ und $\overline{SA} = 45~\text{km}$, so ist die Höhe des Bergs das Produkt der Höhe des Kirchturms mit:

    • $\frac{\overline{SA'}}{\overline{SA}} = \frac{45+15}{45}= { \frac{60}{45}}$.
    Bei einer Höhe des Kirchturms von $\overline{AB}=18~\text m$ ergibt sich eine Höhe des Bergs von:

    $\overline{A'B'} = \frac{\overline{AB} \cdot \overline{SA'}}{\overline{SA}} =18~ \text m \cdot \frac{60}{45} = 24~\text m$

    Beispiel 2:

    Bei der Anwendung des Strahlensatzes müssen die beiden Parallelen nicht auf derselben Seite des Scheitels der Strahlen liegen. Die Figur im Bild ist eine Strahlensatzfigur, denn die beiden Strahlen durch die Punkte $A$ und $A'$ bzw. $B$ und $B'$ schneiden sich im Scheitelpunkt $S$ und die Strecken $\overline{AB}$ und $\overline{A'B'}$ sind parallel zueinander. Denn sie sind beide senkrecht zu der Strecke $\overline{AA'}$.

    Mit dem ${2.}$ Strahlensatz kannst du die Breite $\overline{AB}$ des Flusses berechnen. Ist $\overline{SA} = 24~\text m$ und $\overline{SA'}=9~\text m$ und $\overline{A'B'}=3~\text{m}$, so erhältst du die Breite des Flusses aus dem $2.$ Strahlensatz:

    • $\overline{AB} = \frac{\overline{A'B'} \cdot \overline{SA}}{\overline{SA'}}= \frac{3~\text m \cdot 24~\text m}{9~\text m} = 8~\text m$
  • Gib die Eigenschaften der Strahlensätze und Strahlensatzfiguren wieder.

    Tipps

    Einen Strahl nennt man auch Halbgerade.

    Jede Gleichung aus den Strahlensätzen kannst du nach einer Strecke auflösen und deren Länge aus den anderen Längen berechnen.

    Dies ist keine Strahlensatzfigur.

    Lösung

    Folgende Sätze sind richtig:

    • „In jeder Strahlensatzfigur kommen zwei Strahlen mit gemeinsamem Scheitel und zwei diese Strahlen schneidende Parallelen vor.“ Das ist die Definition der Strahlensatzfigur. Du siehst eine solche Strahlensatzfigur hier im Bild. Die beiden Strahlen gehen von $S$ aus, die beiden Parallelen laufen durch die Punkte $A$ und $B$ bzw. $A'$ und $B'$.
    • „Die Strahlensätze vergleichen die Längenverhältnisse verschiedener Strecken in einer Strahlensatzfigur.“ Die Gleichungen der Strahlensätze sind Aussagen über die Längenverhältnisse der Strecken in der Strahlensatzfigur. Im Bild siehst du eine Gleichung aus dem ersten Strahlensatz. Sie vergleicht das Verhältnis der Länge $\overline{SA}$ zur Länge $\overline{SA'}$ mit dem Verhältnis der Länge $\overline{SB}$ zur Länge $\overline{SB'}$.
    Folgende Aussagen sind falsch:

    • „Ein Strahl hat einen Anfangs- und Endpunkt.“ Ein Strahl ist dasselbe wie eine Halbgerade. Diese hat einen Anfangspunkt, aber keinen Endpunkt.
    • „Der Scheitel einer Strahlensatzfigur ist ein Punkt auf einer der Parallelen.“ Der Scheitel der Strahlensatzfigur ist der Punkt $S$ im Bild, in dem sich die beiden Strahlen schneiden. Die beiden Parallelen verlaufen nicht durch den Scheitelpunkt $S$.
    • „Mit den Strahlensätzen kannst du die Länge einer Strecke aus zwei anderen Strecken berechnen.“ Um eine Strecke in einer Strahlensatzfigur mithilfe der Strahlensätze zu berechnen, brauchst du drei Strecken. Denn jede Gleichung enthält vier Strecken. Wenn du die Gleichung nach einer Strecke auflöst, bleiben drei Strecken auf der anderen Seite der Gleichung, die du kennen musst, um die unbekannte Strecke auszurechnen. Löst du zum Beispiel die Formel im Bild nach einer Länge auf, so stehen auf der anderen Seite der Gleichung drei Längen. Diese drei Längen musst du kennen, um die vierte Länge berechnen zu können.
  • Prüfe die Anwendungen der Strahlensätze.

    Tipps

    Mit dem $2.$ Strahlensatz bestimmte Thales von Milet die Höhe der Cheopspyramide aus der Länge des Stabs sowie seiner Abstände zum Stab und zur Pyramide.

    Lösung

    Folgende Aussagen sind richtig:

    Schatten des Daumens:

    Beim Peilen über den Daumen erhältst du die Strahlensatzfigur hier im Bild. Der Scheitelpunkt $S$ ist dein Daumen, die Strahlen sind die Blicklinien deiner beiden Augen. Dein Augenabstand ist die Strecke $\overline{AB}$, der Abstand zwischen den beiden scheinbaren Positionen deines Daumens ist $\overline{A'B'}$. Du kannst mit dem $2.$ Strahlensatz die Länge $\overline{A'B'}$ aus deiner Armlänge $\overline{SA}$, deinem Augenabstand $\overline{AB}$ und dem Abstand $\overline{SA'}$ zur Leinwand berechnen.

    Wenn du noch genauer rechnen willst, kannst du einen weiteren Strahl von der Mitte $C$ zwischen deinen beiden Augen zum Mittelpunkt $C'$ der Strecke $A'B'$ konstruieren. Der Abstand zur Leinwand ist dann die Strecke $\overline{CC'}$, die du mit dem $1.$ Strahlensatz aus den gegebenen Strecken berechnen kannst. Für praktische Rechnungen macht das aber kaum einen Unterschied, weil die Strecken $\overline{SC'}$ und $\overline{SA'}$ annähernd gleich lang sind.

    Felsen:

    Die Strahlensatzfigur besteht aus den Blicklinien, die von deinem Auge über deine Fingerkuppe zur Spitze des Felsens sowie von deinem Auge über deine Daumenwurzel zum Fußpunkt des Felsens verlaufen. Die Höhe des Felsens entspricht der Strecke $\overline{A'B'}$ in der Strahlensatzfigur, die Länge deines Daumens der Strecke $\overline{AB}$. Deine Armlänge entspricht der Strecke $\overline{SA}$, und die gesuchte Entfernung zu dem Felsen ist die Strecke ${SA'}$.

    Folgende Aussagen sind falsch:

    Sonne:

    In einer Strahlensatzfigur, mit der du die Sonne anpeilst, entspricht der Durchmesser der Sonne der Strecke $\overline{A'B'}$. Du kannst diese Strecke nur berechnen, wenn du einen der Abstände $\overline{SA'}$, $\overline{AA'}$, $\overline{SB'}$ oder $\overline{BB'}$ kennst. Du kommst also nicht allein mit den irdischen Größen $\overline{SA}$, $\overline{SB}$ und $\overline{AB}$ aus. Damit ergibt sich: Um den Durchmesser der Sonne zu bestimmen, benötigst du die Größe ihrer Entfernung. Um die Entfernung zur Sonne zu bestimmen, benötigst du die Größe ihres Durchmessers.

    Mond:

    Verdeckst du den Mond mit einer Kirsche, so konstruierst du eine Strahlensatzfigur. Der Durchmesser der Kirsche entspricht der Strecke $\overline{AB}$, der Durchmesser des Mondes der Strecke $\overline{A'B'}$. Verdoppelst du die Entfernung des Mondes, so ändert sich nicht die Größe des Mondes, d. h., du kannst gar nicht dieselbe Strahlensatzfigur verwenden. Die Strahlen der neuen Strahlensatzfigur liegen in einem kleineren Winkel zueinander, sodass dann auch der weiter entfernte Mond kleiner erscheint. Ganz so, wie es sein soll.