30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Zylinder – Volumen und Oberfläche

Bewertung

Ø 4.1 / 35 Bewertungen

Die Autor*innen
Avatar
Team Digital
Zylinder – Volumen und Oberfläche
lernst du in der Unterstufe 3. Klasse - 4. Klasse

Beschreibung Zylinder – Volumen und Oberfläche

Inhalt

Einführung: Zylinder

Der Zylinder ist ein Körper. Grundfläche und Deckfläche des Zylinders sind per Definition zueinander parallele und kongruente Kreise. Diese werden von einer Fläche ummantelt, der Mantelfläche. Der Abstand von Grund- zur Deckfläche ist die Höhe $h$ des Zylinders.

Zylinder mit Grundfläche Deckfläche Radius

Wenn man diesen Körper an den Kanten aufschneidet und auffaltet, erhält man das Körpernetz.

Zylinder Mantelfläche Oberfläche Netz Zylindernetz

Die in dem Netz zu sehende Mantelfläche und die beiden Kreise bilden gemeinsam die Oberfläche des Zylinders.

Oberfläche Zylinder

Die Oberfläche ergibt sich also als Summe der Mantelfläche sowie dem Doppelten der Grundfläche:

$O=2G +M$.

Um die Oberfläche zu berechnen, muss man also zunächst die Grundfläche des Zylinders berechnen. Die Grundfläche ist ein Kreis. Somit gilt für die Grundfläche des Zylinders die Formel:

$G=\pi\cdot r^2$.

Diese Fläche geht zweimal ein. Denn die Grundfläche und die Deckfläche sind kongruent und können mit derselben Formel berechnet werden.

Dann muss man noch die Mantelfläche des Zylinders berechnen. Die Mantelfläche ist ein Rechteck mit den Seitenlängen Höhe des Zylinders und Umfang der Grundfläche. Damit gilt für die Mantelfläche des Zylinders die Formel:

$M=2\pi\cdot r\cdot h$.

Nun kann die Oberflächenformel Zylinder angegeben werden:

$O=2\pi \cdot r^2+2\pi\cdot r\cdot h=2\pi~r\cdot(r+h)$

Volumen Zylinder

Das Volumen eines Zylinders kann mit folgender Formel berechnet werden:

$V=G\cdot h=\pi\cdot r^2\cdot h$

Zylinder Oberfläche berechnen

Zunächst soll die Zylinderoberfläche eines Zylinders mit den folgenden gegebenen Größen berechnet werden:

$r=15~\text{cm}$ und $h=5~\text{cm}$

Diese Größen werden in die Oberfläche Zylinder Formel eingesetzt:

$O=2\pi~r\cdot(r+h)$

Dies führt zu:

$O=2\pi\cdot 15~\text{cm}\cdot(15~\text{cm}+5~\text{cm})$

Und weiter zu:

$O=2\pi\cdot 15~\text{cm}\cdot 20~\text{cm}=600\pi~\text{cm}^2\approx 1844,96~\text{cm}^2 $

Zylinder Volumen berechnen

Für den Zylinder aus dem obigen Beispiel mit $r=15~\text{cm}$ und $h=5~\text{cm}$ kann man mit folgender Volumenformel schließlich noch das Volumen berechnen:

$V=\pi\cdot r^2\cdot h$

Die bekannten Größen werden in diese Formel eingesetzt:

$V=\pi\cdot \left(15~\text{cm}\right)^2\cdot 5~\text{cm}$

Nun kann weitergerechnet werden:

$V=\pi\cdot 225~\text{cm}^2\cdot 5~\text{cm}=1125\pi~\text{cm}^3\approx 3534,29~\text{cm}^3$

Formeln Zylinder

Zylinder Volumen Oberfläche
Grundfläche mal Höhe zweimal Grundfläche plus Mantelfläche
Formel V = G⋅h = πr²⋅h O = 2G + M = 2⋅πr² + 2πr⋅h
= 2πr⋅(r+h)
Beispiel: r = 5cm, h = 2cm V = π⋅(5cm)²⋅2cm
≈ 157,1cm³
O = 2π⋅5cm⋅(5cm + 2cm)
≈ 219,9cm²

Transkript Zylinder – Volumen und Oberfläche

Oh! Das sieht aber lecker aus! Ein Kuchen und Torten Wettbewerb? Wäre es nicht toll einen der heißbegehrten Preise zu gewinnen? Nichts einfacher als das, denkt Titus! Um die Jury zu beeindrucken, möchte er eine besonders große Torte backen. Dabei kann er sein Wissen über den Zylinder verwenden. Ein Kuchen wird nämlich oft in so einer Form gebacken. Der Zylinder ist ein Körper, der als Grundfläche einen Kreis besitzt. Verschieben wir diese Grundfläche... und ummanteln den entstandenen Zwischenraum, erhalten wir einen Zylinder. Der Zylinder besteht also aus einer kreisförmigen Grundfläche und einer kreisförmigen Deckfläche, die jeweils den gleichen Radius besitzen. Sie sind also kongruent. Durch die Verschiebung des Kreises haben wir außerdem die Höhe des Zylinders erhalten. Klappen wir den Zylinder nun auf, so sehen wir das Körpernetz. Es besteht aus der Grundfläche, der Deckfläche und dieser rechteckigen Fläche, die auch Mantelfläche genannt wird. All diese Flächen zusammen bilden die Oberfläche des Zylinders. Zur Berechnung der Oberfläche benötigen wir also den Flächeninhalt der beiden Kreise und den Flächeninhalt der Mantelfläche. Da die Kreise kongruent zueinander sind, haben sie beide den gleichen Flächeninhalt. Wir rechnen zwei mal pi mal r quadrat. Für das Rechteck benötigen wir nun nur noch die Längen der beiden Seiten. Diese Seite hier ist die Höhe h. Und diese Seite umschließt die Grundfläche des Zylinders, wir können sie also durch den Umfang des Kreises darstellen. Der Flächeninhalt des Rechtecks beträgt also U mal h. Da der Umfang eines Kreises mit zwei mal pi mal r berechnet wird, erhalten wir für die Mantelfläche also zwei mal pi mal r mal h. Für die Oberfläche haben wir nun diese Formel. Fassen wir sie noch weiter zusammen, so erhalten wir zwei mal pi mal r mal in Klammern (r+h). Schauen wir uns das doch nun an einem Beispiel an: die Kuchenform, in der Titus seinen Kuchen backen möchte, hat einen Radius von 15 cm und eine Höhe von 5 cm. Welche Oberfläche wird dieser Kuchen haben? Setzen wir die Werte in die Formel ein und rechnen dies aus so sehen wir, dass der Kuchen eine Oberfläche von ungefähr 1884,96 Quadratzentimetern haben wird. Was für ein Volumen würde dieser Kuchen denn haben? Das Volumen eines Zylinders berechnen wir mithilfe der Grundfläche und der Höhe. Die Grundfläche ist ein Kreis, also können wir wieder die Formel für den Flächeninhalt eines Kreises verwenden. Für das Volumen verwenden wir also die Formel pi mal r quadrat mal h. Bei einem Radius von 15 cm und einer Höhe von 5 cm hat der Kuchen also ein Volumen von ungefähr 3534,29 Kubikzentimetern. Während Titus seine Torte zubereitet, fassen wir zusammen. Die Oberfläche eines Zylinders setzt sich zusammen aus Mantelfläche, Grund- und Deckfläche. Da die Grund- und Deckfläche den gleichen Flächeninhalt besitzen, berechnen wir die Oberfläche mit zwei mal G plus M und das sind 2 mal pi mal r mal in Klammern (r +h). Die Oberfläche umschließt das Volumen des Zylinders. Dieses berechnet man mithilfe der Grundfläche und der Höhe, also pi mal r quadrat mal h. Ist Titus wohl schon auf dem Weg zum Wettbewerb? Oh, da konnte er der Torte wohl nicht widerstehen.

6 Kommentare

6 Kommentare
  1. Danke🧍🏻

    Von Itslearning Nutzer 2535 34332, vor 7 Monaten
  2. So kompliziert erklärt und die Formeln so komisch erklärt. 0 von 5 sternen

    Von Itslearning Nutzer 2535 45249, vor 8 Monaten
  3. Hallo Sivli Strauss,
    bitte beschreibe genauer, was du nicht verstanden hast. Gib beispielsweise die konkrete Stelle im Video mit Minuten und Sekunden an. Gerne kannst du dich auch an den Fach-Chat wenden, der von Montag bis Freitag zwischen 17-19 Uhr für dich da ist.
    Ich hoffe, dass wir dir weiterhelfen können.
    Liebe Grüße aus der Redaktion

    Von Adina Schulz, vor 11 Monaten
  4. Grausam, da kann ich auch bei meinem Mathelehrer bleiben und mir das Abo hier sparen. Für Mathegenies mag es gut sein, für andere völlig unverständlich erklärt, danach stellen sich mehr Fragen als beantwortet wurden.

    Von Silvi Strauss, vor 11 Monaten
  5. Hallo Arno Brandherm,
    vielen Dank für deinen Hinweis. Wir werden den Fehler schnellstmöglich korrigieren.
    Liebe Grüße aus der Redaktion

    Von Adina Schulz, vor 11 Monaten
Mehr Kommentare

Zylinder – Volumen und Oberfläche Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zylinder – Volumen und Oberfläche kannst du es wiederholen und üben.
  • Gib wieder, wie man die Oberfläche eines Zylinders bestimmt.

    Tipps

    Da die Grundfläche $G$ und Deckfläche $D$ kongruent sind, können wir $D=G$ annehmen.

    Eine Seite der Mantelfläche liegt genau an dem Umfang des Kreises an.

    Zuletzt können wir die einzelnen bestimmten Größen zu unserer Formel zusammensetzen.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Die Oberfläche eines Zylinders besteht aus der Grundfläche, der Deckfläche und der Mantelfläche. Das können wir so schreiben:

    $O=2G+M$“.

    • Da die Grund - und Deckfläche kongruent sind, können wir diese hier zusammenfassen.
    „Die Grundfläche ist ein Kreis mit dem Radius $r$. Seine Fläche können wir so angeben:

    $G=\pi r^2$.“

    • So berechnest du den Flächeninhalt eines Kreises.
    „Die Mantelfläche ist ein Rechteck. Eine der Seitenlängen dieses Rechtecks ist die Höhe des Zylinders. Die andere entspricht dem Umfang der Grundfläche. So erhalten wir:

    $M=h\cdot2 \pi r$.“

    • Eine Seite der Mantelfläche liegt genau an dem Umfang des Kreises an. Deshalb muss dies eine Seite des Rechtecks sein.
    „Fügen wir die Formeln zusammen, erhalten wir für die Oberfläche:

    $O=2G+M=2 \pi r^2+2h \pi r=2 \pi r (r+h)$.“

    • Zuletzt können wir die einzelnen bestimmten Größen zu unserer Formel zusammensetzen.
  • Gib an, wie man das Volumen eines Zylinders bestimmt.

    Tipps

    Das Volumen eines Körpers mit zwei kongruenten parallelen Flächen bestimmst du immer, indem du die Grundfläche mit der Höhe des Körpers mutiplizierst.

    Zum Schluss kannst du die gegebenen Größen einsetzen und ausrechnen.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Das Volumen eines Zylinders berechnen wir, indem wir die Grundfläche $G$ mit der Höhe $h$ multiplizieren. So erhalten wir:

    $V=G \cdot h$.“

    • Das Volumen eines Körpers mit zwei kongruenten parallelen Flächen bestimmst du immer, indem du die Grundfläche mit der Höhe des Körpers multiplizierst.
    „Die Grundfläche ist ein Kreis. Also benötigen wir die Formel für den Flächeninhalt eines Kreises:

    $G=\pi r^2$.

    Wir erhalten:

    $V=\pi r^2 \cdot h$.“

    • Hier setzen wir die Formel für den Flächeninhalt eines Kreises in die Formel des Volumens ein.
    „Hier können wir die gegebenen Größen einsetzen:

    $V=\pi (15~\text{cm})^2 \cdot 5~\text{cm}\approx3534,29~\text{cm}^3$.“

    • Anschließend kannst du die gegebenen Größen einsetzen und ausrechnen.
  • Ermittle, wo die Oberfläche der Zylinder korrekt bestimmt wurde.

    Tipps

    Die Oberfläche eines Zylinders besteht aus seiner rechteckigen Mantelfläche $M$ und der kongruenten, kreisförmigen Grund- und Deckfläche.

    $O=2G+M$

    Mit $G=\pi r^2$ und $M=2h \pi r$ erhältst du:

    $O=2G+M=2 \pi r^2+2h \pi r=2 \pi r (r+h)$.

    In diese Formel kannst du die gegebenen Größen einsetzen, um die Oberflächen zu berechnen und zu vergleichen.

    Lösung

    Die Oberfläche eines Zylinders besteht aus seiner rechteckigen Mantelfläche $M$ und der kongruenten, kreisförmigen Grund- und Deckfläche.

    $O=2G+M$

    Mit $G=\pi r^2$ und $M=2h \pi r$ erhalten wir:

    $O=2G+M=2 \pi r^2+2h \pi r=2 \pi r (r+h)$.

    In diese Formel können wir die gegebenen Größen einsetzen, um die Oberflächen zu berechnen und mit den gegebenen Werten zu vergleichen. Damit erhalten wir, dass folgende Oberflächen falsch berechnet wurden:

    „Ein Zylinder mit $r=3~\text{cm}$ und $h=3~\text{cm}$ hat keine Oberfläche von $O=131,2~\text{cm}^2$.“

    • So berechnest du die Oberfläche richtig: $O=2 \pi \cdot 3~\text{cm} \cdot (3~\text{cm}+3~\text{cm}) \approx 113,10~\text{cm}^2.$
    „Ein Zylinder mit $r=2~\text{cm}$ und $h=3,5~\text{cm}$ hat keine Oberfläche von $O=82,34~\text{cm}^2$.“

    • So berechnest du die Oberfläche richtig: $O=2 \pi \cdot 2~\text{cm} \cdot (2~\text{cm}+3,5~\text{cm}) \approx 69,12~\text{cm}^2.$
    Folgende Oberflächen wurden korrekt bestimmt:

    • $O=2 \pi \cdot 2~\text{cm} \cdot (2~\text{cm}+3~\text{cm}) \approx 62,83 ~\text{cm}^2$
    • $O=2 \pi \cdot 2,5~\text{cm} \cdot (2,5~\text{cm}+2,5~\text{cm}) \approx 78,54 ~\text{cm}^2$
  • Ermittle die Volumen der Zylinder.

    Tipps

    Das Volumen eines Zylinders erhältst du, indem du seine Grundfläche $G$ mit seiner Höhe $h$ multiplizierst.

    $V=G \cdot h$

    Die Grundfläche ist ein Kreis mit dem Flächeninhalt $\pi r^2$. Dabei ist $r$ der Kreisradius.

    Lösung

    Das Volumen eines Zylinders erhältst du, indem du seine Grundfläche $G$ mit seiner Höhe $h$ multiplizierst.

    $V=G \cdot h$

    Da die Grundfläche ein Kreis mit Flächeninhalt $\pi r^2$ ist, kannst du die Formel für das Volumen eines Zylinders so angeben:

    $V=\pi r^2 \cdot h$.

    Setzten wir in diese Formel die gegebenen Größen ein, erhalten wir:

    • $V=\pi (2~\text{m})^2 \cdot 3~\text{m}\approx 37,70~\text{m}^3$
    • $V=\pi (3~\text{m})^2 \cdot 3~\text{m}\approx 84,82~\text{m}^3$
    • $V=\pi (2,5~\text{m})^2 \cdot 2,5~\text{m}\approx 49,09~\text{m}^3$
    • $V=\pi (2~\text{m})^2 \cdot 3,5~\text{m}\approx 43,98~\text{m}^3$
  • Bestimme die korrekten Aussagen zur Oberfläche und dem Volumen von Zylindern.

    Tipps

    Die Grund- und Deckfläche eines Zylinders sind zwei kongruente Kreise.

    Hat ein Körper zwei parallele, kongruente Seitenflächen, kannst du sein Volumen bestimmen, indem du die Grundfläche mit der Höhe des Körpers multiplizierst.

    Lösung

    Diese Aussagen sind falsch:

    „Die Grundfläche eines Zylinders ist ein Viereck.“

    • Ein Zylinder hat zwei kongruente Kreise. Diese heißen Grund- und Deckfläche.
    „Ausgerollt ist die Mantelfläche eines Zylinders ein Dreieck.“

    • Die Mantelfläche ist ein Rechteck mit der Höhe des Zylinders und dem Umfang der Grundfläche als Seitenlängen.
    Diese Aussagen sind richtig:

    „Die Grund- und Deckfläche besitzen den gleichen Radius.“

    • Da die beiden Flächen kongruent sind, besitzen sie auch den gleichen Radius.
    „Eine Seite der Mantelfläche entspricht dem Umfang der Grundfläche.“

    „Das Volumen eines Zylinders kannst du bestimmen, indem du die Grundfläche mit der Höhe multiplizierst.“

    • Hat ein Körper zwei parallele, kongruente Seitenflächen, kannst du sein Volumen bestimmen, indem du die Grundfläche mit der Höhe des Körpers multiplizierst. Dies ist auch hier der Fall.
  • Ermittle das Volumen und die Oberfläche des Halbzylinders.

    Tipps

    Mit $\frac{1}{2}$ zu multiplizieren ist das gleiche, wie durch $2$ zu teilen.

    Die Mantelfläche eines Zylinders beträgt $M=2 \cdot h \cdot \pi \cdot r$.

    Der Durchmesser ist das Doppelte des Radius.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Da der Zylinder genau halbiert wurde, ist nur noch die Hälfte des Volumens $V$ übrig. Wir erhalten also für das Volumen des Halbzylinders $V_H$ folgende Formel:

    $V_H=\frac{V}{2}=\frac{1}{2} \cdot \pi r^2 \cdot h$.“

    • Mit $\frac{1}{2}$ zu multiplizieren ist das gleiche, wie durch $2$ zu teilen.
    „Damit ergibt sich ein Volumen von: $V_H \approx 1884,96~\text{cm}^3.$“

    • Setzt du die gegebenen Größen ein, erhältst du diesen Zahlenwert.
    „Die Oberfläche $O_H$ eines Halbzylinders besteht aus zwei gleich großen Halbkreisen und zwei unterschiedlich großen Rechtecken. Die Oberfläche $O_K$ eines Halbkreises bestimmen wir durch:

    $O_K=\frac{1}{2} \pi r^2$.“

    • Ein Halbkreis hat genau die Hälfte der Fläche eines Kreises. Deshalb kannst du die Fläche eines Halbkreises angeben, indem du mit $\frac{1}{2}$ multiplizierst.
    „Die Fläche des ersten Rechtecks $A_M$ entspricht der Hälfte der Mantelfläche. Also erhalten wir:

    $A_M=h \cdot \pi \cdot r$.“

    • Auch hier wurde durch zwei geteilt. Da allerdings die Mantelfläche eines Zylinders $2 \cdot h \cdot \pi \cdot r$ beträgt, können wir hier die zwei wegkürzen: $\frac{1}{2} \cdot 2 \cdot h \cdot \pi \cdot r =h \cdot \pi \cdot r.$
    „Das letzte Rechteck ist die Fläche, die beim Durchschneiden des Zylinders entstanden ist. Eine Seitenlänge entspricht der Höhe $h$ und die andere dem Durchmesser der Grundfläche. Also:

    $A_R=h \cdot 2r$.“

    • Der Durchmesser ist das Doppelte des Radius: $d=2r$.
    „Zusammen erhalten wir:

    $O_H=\pi r^2+h \cdot \pi \cdot r+2rh$.“

    • Jetzt setzen wir die einzelnen Teile der Formel zusammen.
    Setzen wir die gegebenen Größen ein, erhalten wir eine Fläche von:

    $O_H \approx 931,15~\text{cm}^2$.“

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

10.237

Lernvideos

42.599

Übungen

37.612

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden