Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Tangens am Einheitskreis

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.5 / 11 Bewertungen
Die Autor*innen
Avatar
Team Digital
Tangens am Einheitskreis
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Tangens am Einheitskreis Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Tangens am Einheitskreis kannst du es wiederholen und üben.
  • Beschreibe, wie du den Tangens von $\alpha$ am Einheitskreis ablesen kannst.

    Tipps

    Es muss ein rechtwinkliges Dreieck entstehen, in dem die Ankathete von $\alpha$ die Länge $1~\text{LE}$ hat.

    Lösung

    Um den Wert des Tangens für einen bestimmten Winkel am Einheitskreis ablesen zu können, zeichnen wir zunächst den Einheitskreis. Dieser hat den Radius $r = 1~\text{LE}$ und den Ursprung des Koordinatensystems als Mittelpunkt.

    Im Einheitskreis tragen wir dann den Winkel $\alpha$ ausgehend von der positiven $x$-Achse ein.

    Da der Tangens im rechtwinkligen Dreieck als das Seitenverhältnis zwischen Gegenkathete und Ankathete definiert ist, benötigen wir ein Dreieck, bei dem die Ankathete die Länge $1~\text{LE}$ hat. Da die Ankathete von $\alpha$ entlang der $x$-Achse verläuft, muss die Gegenkathete entlang einer Senkrechten durch den Punkt $(1 \vert 0)$ verlaufen. Wir zeichnen eine entsprechende Gerade bei $x = 1$ und verlängern den Kreisradius, sodass ein Dreieck entsteht.

    Der Punkt $Q$ ist der Eckpunkt gegenüber von $\alpha$, er liegt im Schnittpunkt des verlängerten Radius mit der Geraden $x = 1$.

    Die $x$-Koordinate von $Q$ entspricht dann der Länge der Ankathete $1~\text{LE}$, die $y$-Koordinate der Länge der Gegenkathete. Es ergibt sich:

    $\tan(\alpha) = \frac{\text{Gegenkathete}}{\text{Ankathete}} = \frac{\text{Gegenkathete}}{1} = \text{Gegenkathete}$

    Wir können also den Tangens von $\alpha$ an der $\mathbf{y}$-Koordinate von $Q$ ablesen.

  • Vervollständige die Tabelle mit den Werten für $\tan(\alpha)$.

    Tipps

    Skizziere dir das passende Dreieck am Einheitskreis, um den Wert für den Tangens ablesen zu können.

    Hier siehst du ein Beispiel für einen Winkel über $90^\circ$.

    Ist die Verlängerung des Radius durch den Punkt $P$ parallel zu der Geraden $x = 1$, gibt es keinen Schnittpunkt. Der Tangens ist für diese Winkel nicht definiert.

    Lösung

    Die Tabelle zeigt die Werte für den Tangens bei verschiedenen Winkeln $\alpha$.

    Für jeden Winkel lassen sich die zugehörigen Werte für den Tangens über die $y$-Koordinate des entsprechenden Punktes $Q$ mithilfe des Einheitskreises ablesen.
    Es gilt $Q(1 \vert \tan(\alpha))$.


    Für die Winkel in der Tabelle ergibt sich dabei folgendes Bild:

    • $\alpha = 0^\circ$: Der Punkt $Q$ liegt auf der $x$-Achse bei $1$. Darum gilt $\tan(0^\circ) = 0$.
    • $\alpha = 45^\circ$: Der Punkt $Q$ befindet sich auf der Geraden $x = 1$ bei $y = 1$. Daher gilt $\tan(45^\circ) = 1$.
    • $\alpha = 90^\circ$: Die Verlängerung des Radius durch den Punkt $P$ ist parallel zur Geraden $x = 1$. Deshalb gibt es keinen Schnittpunkt. Der Tangens ist nicht definiert.
    • $\alpha = 135^\circ$: Der Punkt $Q$ liegt auf der Geraden $x = 1$ bei $y = -1$. Deswegen gilt $\tan(135^\circ) = -1$.
    • $\alpha = 180^\circ$: Der Punkt $Q$ befindet sich auf der $x$-Achse bei $1$. Darum gilt $\tan(180^\circ) = 0$.
    • $\alpha = 225^\circ$: Der Punkt $Q$ liegt auf der Geraden $x = 1$ bei $y = 1$. Daher gilt $\tan(225^\circ) = 1$.
    • $\alpha = 270^\circ$: Die Verlängerung des Radius durch den Punkt $P$ ist parallel zur Geraden $x = 1$. Deshalb gibt es keinen Schnittpunkt. Der Tangens ist nicht definiert.
    • $\alpha = 360^\circ$: Der Punkt $Q$ befindet sich auf der $x$-Achse bei $1$. Deswegen gilt $\tan(360^\circ) = 0$.
  • Entscheide, ob die Aussagen zum Tangens am Einheitskreis stimmen.

    Tipps

    Überprüfe, ob du die Aussagen durch Skizzieren am Einheitskreis widerlegen kannst.

    Hier siehst du ein Beispiel für $\alpha = 225^\circ$.

    Lösung

    Wir können im Einheitskreis beliebige Winkel einzeichnen. Den Tangens erhalten wir, indem wir den Schnittpunkt des verlängerten Radius mit der senkrechten Geraden bei $x = 1$ abtragen. Er entspricht dem $y$-Wert dieses Schnittpunkts.

    Folgende Aussagen sind richtig:

    • Der Wert für den Tangens wird immer auf einer senkrechten Geraden bei $x = 1$ abgetragen.
    Wir bestimmen den Schnittpunkt des verlängerten Radius mit dieser Geraden.
    • Überall, wo der Cosinus im Einheitskreis den Wert $0$ hat, ist der Tangens nicht definiert.
    Der Cosinus hat bei $90^\circ$ und $270^\circ$ den Wert $0$, da dort der Radius auf der $y$-Achse liegt. Eine Verlängerung des Radius ist parallel zur senkrechten Geraden bei $x = 1$. Es gibt daher keinen Schnittpunkt und der Tangens ist nicht definiert.

    Folgende Aussagen sind falsch:

    • Wir können den Tangens für alle Winkel zwischen $0^\circ$ und $360^\circ$ am Einheitskreis einzeichnen.
    Wir können zwar die Winkel am Einheitskreis einzeichnen, für Winkel der Form $90^\circ + k \cdot 180^\circ$ mit $k \in \mathbb{Z}$ ist der Tangens jedoch nicht definiert. Der Radius verläuft hier parallel zur Senkrechten bei $x = 1$, weshalb wir den Tangens nicht einzeichnen können.
    • Der Tangens kann nur Werte zwischen $-1$ und $1$ annehmen, da der Einheitskreis den Radius $r = 1~\text{LE}$ hat.
    Der Tangens kann auch Werte größer als $1$ und kleiner als $-1$ annehmen, zum Beispiel für Winkel zwischen $45^\circ$ und $90^\circ$.
    • Der Tangens nimmt für Winkel über $90^\circ$ negative Werte an.
    Die Werte des Tangens sind zwischen $90^\circ$ und $180^\circ$ negativ. Zwischen $180^\circ$ und $270^\circ$ nimmt der Tangens aber erneut positive Werte an, was ebenfalls Winkel über $90^\circ$ sind.
  • Stelle die Tangens-Werte am Einheitskreis dar.

    Tipps

    Zeichne zunächst einen Einheitskreis und das Dreieck für den gegebenen Winkel.

    Beachte, dass die Länge des Tangens immer an der Senkrechten bei $x = 1$ abgelesen werden kann.

    Lösung

    Wenn wir Tangens-Werte am Einheitskreis darstellen wollen, gehen wir folgendermaßen vor:

    • Wir zeichnen den zugehörigen Winkel $\alpha$ ausgehend von der positiven $x$-Achse im Einheitskreis ein.
    • Danach zeichnen wir eine senkrechte Gerade bei $x = 1$ und verlängern den Kreisradius, sodass ein Dreieck entsteht.
    • Der Punkt $Q$ ist der Eckpunkt gegenüber von $\alpha$. Er liegt im Schnittpunkt des verlängerten Radius mit der Geraden $x = 1$.
    • In dem entstandenen rechtwinkligen Dreieck entspricht die senkrechte Kathete dem Tangens von $\alpha$.

    Beispiel 1:

    Wir zeichnen einen Einheitskreis mit dem Winkel $\alpha = 25^\circ$ und die Senkrechte durch $x = 1$. Wir verlängern den Radius über den Kreis hinaus, bis er die Senkrechte schneidet. Wir markieren die senkrechte Kathete des entstandenen rechtwinkligen Dreiecks für $\tan(25^\circ)$.

    Beispiel 2:

    Wir zeichnen einen Einheitskreis mit dem Winkel $\alpha = 125^\circ$ und die Senkrechte durch $x = 1$. Wir verlängern den Radius über den Mittelpunkt hinaus, bis er die Senkrechte schneidet. Wir markieren die senkrechte Kathete des entstandenen rechtwinkligen Dreiecks für $\tan(125^\circ)$.

    Beispiel 3:

    Wir zeichnen einen Einheitskreis mit dem Winkel $\alpha = 205^\circ$ und die Senkrechte durch $x = 1$. Wir verlängern den Radius über den Mittelpunkt hinaus, bis er die Senkrechte schneidet. Wir markieren die senkrechte Kathete des entstandenen rechtwinkligen Dreiecks für $\tan(205^\circ)$.

    Beispiel 4:

    Wir zeichnen einen Einheitskreis mit dem Winkel $\alpha = 335^\circ$ und die Senkrechte durch $x = 1$. Wir verlängern den Radius über den Kreis hinaus, bis er die Senkrechte schneidet. Wir markieren die senkrechte Kathete des entstandenen rechtwinkligen Dreiecks für $\tan(335^\circ)$.

    Hinweis:

    In der verbleibenden Skizze ist der Winkel $\alpha = 125^\circ$ am Einheitskreis eingetragen. Allerdings wurde hier der Radius so verlängert, dass sich ein Dreieck mit der senkrechten Geraden $x = -1$ ergibt. Für den Tangens müssen wir immer die Verlängerung auf die senkrechte Gerade $x = 1$ betrachten, auch wenn der Punkt auf dem Einheitskreis links von der $y$-Achse liegt.

  • Gib die Definition des Tangens am rechtwinkligen Dreieck an.

    Tipps

    In einem Dreieck $ABC$ mit rechtem Winkel bei $C$ gilt:

    $\tan(\alpha) = \dfrac{a}{b}$

    Lösung

    Die Seiten in rechtwinkligen Dreiecken haben besondere Namen: Die längste Seite liegt stets dem rechten Winkel gegenüber und heißt Hypotenuse. Die beiden anderen Seiten, die an dem rechten Winkel anliegen, werden Katheten genannt.
    In Bezug auf einen Winkel unterscheiden wir zudem zwischen der Ankathete, die an dem Winkel anliegt, und der Gegenkathete, die sich gegenüber des Winkels befindet.

    In rechtwinkligen Dreiecken sind die folgenden Seitenverhältnisse definiert:

    • $\tan(\alpha) = \dfrac{\textbf{Gegenkathete}}{\textbf{Ankathete}}$
    • $\sin(\alpha) = \dfrac{\text{Gegenkathete}}{\text{Hypotenuse}}$
    • $\cos(\alpha) = \dfrac{\text{Ankathete}}{\text{Hypotenuse}}$
  • Entscheide, welche Werte übereinstimmen.

    Tipps

    Veranschauliche dir Tangens-Werte am Einheitskreis: Was passiert, wenn du das rechtwinklige Dreieck an einer der Koordinatenachsen spiegelst?

    Die Werte für den Tangens wiederholen sich immer nach $180^\circ$.

    Beispiele:

    $\tan(25^\circ) = \tan(25^\circ + 180^\circ) = \tan(205^\circ)$

    $\tan(311^\circ) = \tan(311^\circ - 180^\circ) = \tan(131^\circ)$

    Lösung

    Die Werte für den Tangens wiederholen sich immer nach $180^\circ$. Allgemein können wir notieren:

    $\tan(\alpha) = \tan(\alpha + k \cdot 180^\circ)$ mit $k \in \mathbb{Z}$

    Wir erhalten:

    • $\tan(10^\circ) = \tan(10^\circ + 180^\circ) = \tan(190^\circ)$
    • $\tan(323^\circ) = \tan(323^\circ - 180^\circ) = \tan(143^\circ)$

    Außerdem nimmt der Tangens im ersten und dritten Quadranten positive Werte an. Im zweiten und vierten Quadranten sind die Tangens-Werte negativ. Dabei haben Punkte, die an der $x$- oder $y$-Achse gespiegelt sind, stets den gleichen Wert mit umgekehrtem Vorzeichen.

    Wir erhalten:

    • Wenn wir das rechtwinklige Dreieck für $\tan(63^\circ)$ an der $y$-Achse spiegeln, dann ergibt sich bei einem Winkel von $180^\circ - 63^\circ = 117^\circ$ derselbe Wert mit umgedrehtem Vorzeichen. Damit gilt $\tan(63^\circ) = -\tan(117^\circ)$.
    • Wenn wir das rechtwinklige Dreieck für $\tan(80^\circ)$ an der $x$-Achse spiegeln, dann ergibt sich bei einem Winkel von $360^\circ - 80^\circ = 280^\circ$ derselbe Wert mit umgekehrtem Vorzeichen. Damit gilt $\tan(80^\circ) = -\tan(280^\circ)$.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.374

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.469

Lernvideos

35.645

Übungen

33.181

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden