40%

Cyber Monday-Angebot – nur bis zum 4.12.2022

sofatutor 30 Tage lang kostenlos testen & dann 40 % sparen!

Aufbau von Vierecken

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 4.0 / 77 Bewertungen

Die Autor*innen
Avatar
Team Digital
Aufbau von Vierecken
lernst du in der Unterstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse

Grundlagen zum Thema Aufbau von Vierecken

Nach dem Schauen dieses Videos kennst du die allgemeinen Merkmale eines Vierecks und weißt wie man es beschriftet.

Zunächst lernst du den Aufbau von Vierecken und deren Beschriftung kennen.

Hilf Leon das Thema der Ausstellung von "Quadri Lateral" herauszufinden.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Viereck, Ecken, Seiten, Winkel, Diagonale.

Bevor du dieses Video schaust, solltest du bereits wissen, welche geometrischen Grundbegriffe es gibt (Punkte, Strecken, Winkel etc.) und was sie bedeuten.

Nach diesem Video wirst du darauf vorbereitet sein, verschiedene Arten von Vierecken kennenzulernen.

Transkript Aufbau von Vierecken

Leon schaut sich heute eine Ausstellung seines Lieblingsfotografen Quadri Lateral an. All diese schönen Bauwerke und ihre Formen. Siehst du was sie alle gemeinsam haben? Was wird wohl das Thema dieser Ausstellung sein? GENAU, die fotografierten Häuserfassaden sind alle VIERECKIG! Doch was genau bedeutet das eigentlich? Schauen wir uns den „Aufbau von Vierecken“ doch mal etwas genauer an: VIERECKE sind ebene, also zweidimensionale, geometrische Figuren. Alle Vierecke sind grundsätzlich gleich aufgebaut. Wie der Name schon sagt, besitzen sie VIER Eckpunkte. Diese werden mit Großbuchstaben beschriftet. In der Regel beginnen wir in der Ecke unten links mit dem Buchstaben „A“ und beschriften die übrigen Eckpunkte des Vierecks dann gegen den Uhrzeigersinn in alphabetischer Reihenfolge. Also mit „B“, „C“ und „D“. Die vier Eckpunkte können aber auch mit anderen Buchstaben beschriftet werden. Zum Beispiel mit E, F, G und H. Die Bezeichnung ist also grundsätzlich beliebig. Meistens nehmen wir für die Eckpunkte aber einfach die ersten vier Buchstaben des Alphabets. Außerdem hat jedes Viereck vier Seiten. Die Seiten verbinden als Strecken jeweils zwei Eckpunkte. Sie sind somit die Umrandung, durch die die Fläche des Vierecks eingeschlossen wird. Auch die Seiten beschriften wir gegen den Uhrzeigersinn. Für sie verwenden wir allerdings Kleinbuchstaben: Die Seite „a“ verbindet die Punkte „A“ und „B“. Außerdem haben wir die Seiten „b“, „c“ und „d“. Bei jedem Eckpunkt hat ein Viereck zudem einen „INNENWINKEL“. Dieser wird von den sich im Eckpunkt treffenden Seiten eingeschlossen. Für die Bezeichnung der Innenwinkel benutzen wir griechische Buchstaben. Beim Punkt A liegt der Winkel „Alpha“, bei Punkt B der Winkel „Beta“, bei Punkt C der Winkel „Gamma“ und bei Punkt D schließlich der Winkel „Delta“. Warum ausgerechnet griechische Buchstaben? Nun ja, griechische Gelehrte der Antike wie zum Beispiel Thales oder auch Archimedes waren wahre Meister der Geometrie. IHREN Studien haben wir es zu verdanken, dass wir auch heute noch griechische Buchstaben zur Bezeichnung von Winkeln benutzen. Das hat auch einen praktischen Vorteil: Wir können so durch die Beschriftung schnell erkennen, dass tatsächlich ein Winkel gemeint ist. Jedes Viereck hat also vier Innenwinkel. Die „Winkelsumme“, also die Summe dieser vier Innenwinkel, beträgt im Viereck immer „dreihundertsechzig Grad“. Bei unserem Beispiel-Viereck sieht das dann so aus: Winkel Alpha beträgt neunundsiebzig Grad, Winkel Beta siebenundachtzig Grad, Gamma ist einhundertundelf Grad groß und der Winkel Delta beträgt dreiundachtzig Grad. In der Summe ergibt das dreihundertsechzig Grad. Zu guter Letzt interessieren uns noch die „DIAGONALEN“. Davon hat jedes Viereck zwei Stück. Sie verbinden jeweils zwei gegenüberliegende Eckpunkte. Also einmal „A“ und „C“ und einmal „B“ und „D“. Die Diagonalen beschriften wir, wie schon die Seiten des Vierecks, mit Kleinbuchstaben. Die Diagonale zwischen „A“ und „C“ nennen wir „e“ und die andere kennzeichnen wir mit einem „f“. Und das war auch schon erstmal alles, was wir über den allgemeinen Aufbau von Vierecken wissen müssen. So einfach und doch so schön eckig. Wir fassen also noch einmal kurz zusammen: Jedes Viereck besitzt vier Eckpunkte, vier Seiten, vier Innenwinkel, deren Summe dreihundertsechzig Grad beträgt und zwei Diagonalen. Alles klar, das können wir uns gut merken! Mit diesem Wissen im Hinterkopf, kann auch Leon seine Aufmerksamkeit wieder voll und ganz den Bildern von Quadri Lateral widmen.

Leon kann gar nicht genug von diesen wundervoll eckigen Gemäuern kriegen. Diese herrlichen Ecken und Kan. Halt, was? Was ist das denn? Was hat dieses Bild denn hier verloren?

17 Kommentare

17 Kommentare
  1. 👍👍👍👍👍👍👍👍👍

    Von Isabell, vor 4 Tagen
  2. Gut

    Von valli, vor 20 Tagen
  3. cool das ist sehr toll,danke

    Von Maierverena03, vor 3 Monaten
  4. Danke!!!'#sehrgut

    Von Bameninghong, vor 6 Monaten
  5. Dank euch habe ich eine zwei = gut in meiner sechsten Mathematikarbeit gekriegt!Danke
    LG 5D

    Von Annabelle , vor 6 Monaten
Mehr Kommentare

Aufbau von Vierecken Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Aufbau von Vierecken kannst du es wiederholen und üben.
  • Erschließe die Eigenschaften von Vierecken.

    Tipps

    Überlege, welche Eigenschaften Vierecke haben, und entscheide dann, welche Wörter in den Lückentext gehören.

    Lösung

    Ein Viereck ist eine ebene, also zweidimensionale geometrische Figur mit vier Ecken. Diese werden mit Großbuchstaben beschriftet. Es wird normalerweise in der Ecke unten links mit dem Buchstaben A begonnen. Dann werden die weiteren Eckpunkte gegen den Uhrzeigersinn in alphabetischer Reihenfolge gekennzeichnet. Grundsätzlich ist die Bezeichnung der Eckpunkte aber beliebig.

    Jedes Viereck hat immer vier Seiten. Die Seiten verbinden als Strecken jeweils zwei Eckpunkte. Sie umranden das Viereck. Sie werden ebenfalls gegen den Uhrzeigersinn mit kleinen Buchstaben beschriftet. Und es wird mit Seite a angefangen, die die Punkte A und B verbindet. Die Diagonalen werden ebenfalls mit kleinen Buchstaben markiert, sie verbinden aber gegenüberliegende Eckpunkte miteinander, zum Beispiel A und C. Sie werden üblicherweise mit e und f bezeichnet.

    Innenwinkel werden von den sich treffenden Seiten im Eckpunkt eingeschlossen. Für die Bezeichnung benutzen wir griechische Buchstaben. Das hat den Vorteil, dass wir gleich wissen, dass es sich um Winkel handelt. Sie werden analog zu den Eckpunkten benannt, also bei A liegt der Winkel α. Alle Innenwinkel ergeben zusammen in der Summe 360°.

  • Benenne das allgemeine Viereck.

    Tipps

    Eckpunkte werden mit Großbuchstaben gegen den Uhrzeigersinn beschriftet.

    Seiten werden mit Kleinbuchstaben gegen den Uhrzeigersinn beschriftet. Die Seite $a$ verbindet die Eckpunkte $A$ und $B$.

    Innenwinkel werden entsprechend den Eckpunkten, bei denen sie liegen, mit griechischen Buchstaben beschriftet. Bei Eckpunkt $A$ liegt also der Innenwinkel $\alpha$.

    Lösung

    Die Eckpunkte eines Vierecks werden mit Großbuchstaben, üblicherweise mit $A$, $B$, $C$ und $D$, gegen den Uhrzeigersinn gekennzeichnet. Die Seiten eines Vierecks werden mit Kleinbuchstaben entsprechend den Eckpunkten gegen den Uhrzeigersinn bezeichnet, hier also mit $a$, $b$, $c$ und $d$. Ebenso werden auch die Diagonalen mit Kleinbuchstaben beschriftet. Die Innenwinkel werden entsprechend den Eckpunkten, bei denen sie liegen, mit griechischen Buchstaben bezeichnet, hier also mit $\alpha$, $\beta$, $\gamma$ und $\delta$.

  • Entscheide anhand der Winkelsumme, ob ein Viereck gegeben ist.

    Tipps

    Die Innenwinkelsumme in einem Viereck beträgt immer $360^\circ$.

    Sieh dir folgendes Beispiel an:

    • $\alpha = 60^\circ;~ \beta = 40^\circ;~ \gamma = 160^\circ;~ \delta = 100^\circ$
    Die Summe der Winkel entspricht

    • $60^\circ + 40^\circ + 160^\circ + 100^\circ = 360°$
    und damit handelt es sich hierbei um die Innenwinkel eines Vierecks.

    Lösung

    Es handelt sich genau dann um ein Viereck, wenn die Summe der Winkel $\alpha$, $\beta$, $\gamma$ und $\delta$ genau $360^\circ$ ergibt.

    Demnach können die folgenden Winkel die Innenwinkel eines Vierecks bilden:

    $92^\circ + 47^\circ + 110^\circ + 111^\circ = 360^\circ$

    $66^\circ + 33^\circ + 111^\circ +150^\circ = 360^\circ$

    Folgende Winkel können nicht die Innenwinkel eines Vierecks sein, da die Innenwinkelsumme nicht $360^\circ$ ergibt:

    $61^\circ+ 78^\circ + 59^\circ + 163^\circ = 361^\circ$

    $170^\circ + 32^\circ + 88^\circ + 71^\circ= 361^\circ$

  • Berechne die Winkelsumme im Viereck.

    Tipps

    Die Winkelsumme im Viereck ergibt immer $360^\circ$. Man addiert also alle Winkel und erhält in der Summe $360^\circ$.

    Die Formel lautet $\alpha + \beta + \gamma + \delta = 360^\circ$.

    Um die Gradangabe eines fehlenden Winkels zu erhalten, kann man auch $360^\circ$ minus die gegebenen Winkel rechnen.

    Lösung

    Um die fehlenden Werte zu erhalten, rechnest du $360^\circ$ minus die gegebenen Winkel.

    1. $\quad 360^\circ - 60^\circ - 80^\circ - 125^\circ = 95^\circ$

    2. $\quad 360^\circ - 130^\circ - 70^\circ - 115^\circ = 45^\circ$

    3. $\quad 360^\circ - 52^\circ - 96^\circ - 74^\circ = 138^\circ$

    4. $\quad 360^\circ - 17^\circ - 201^\circ - 83^\circ = 59^\circ$

  • Beschreibe die Eigenschaften eines allgemeinen Vierecks.

    Tipps

    Die Eckpunkte eines Vierecks werden mit Großbuchstaben bezeichnet, zum Beispiel:

    • $A$, $B$, $C$ und $D$
    • $E$, $F$, $G$ und $H$

    Die Diagonalen eines Vierecks verbinden jeweils zwei gegenüberliegende Eckpunkte eines Vierecks.

    Bei jedem Eckpunkt eines Vierecks liegt ein Innenwinkel.

    Lösung

    Aufbau eines allgemeinen Vierecks

    Ein Viereck hat immer vier Eckpunkte, die mit Großbuchstaben gegen den Uhrzeigersinn beschriftet werden.

    Es hat auch immer vier Seiten, die als Strecken jeweils zwei benachbarte Eckpunkte verbinden. Die Seiten werden immer mit Kleinbuchstaben ebenfalls gegen den Uhrzeigersinn beschriftet.

    Sich im Eckpunkt treffende Seiten bilden die Innenwinkel des Vierecks. Damit liegt bei jedem Eckpunkt ein Innenwinkel. Ein Viereck hat also immer vier Innenwinkel. Die Summe aller Innenwinkel beträgt immer $360^\circ$. Die Winkel werden mit griechischen Buchstaben bezeichnet.

    Die zwei Diagonalen im Viereck verbinden jeweils zwei gegenüberliegende Eckpunkte, sie werden auch mit Kleinbuchstaben bezeichnet.

  • Bestimme die richtigen Aussagen über Vierecke.

    Tipps

    Ein rechter Winkel hat immer $90^\circ$.

    Seiten und Diagonalen werden mit der gleichen Art von Buchstaben bezeichnet.

    Die Winkelsumme bezieht sich immer auf die Innenwinkel.

    Lösung

    Folgende Aussagen sind korrekt:

    Es existiert ein Viereck mit den Innenwinkeln: $\alpha = 30^\circ, \beta = 80^\circ, \gamma = 100^\circ$ und $\delta = 150^\circ$.

    Zwei benachbarte Seiten schließen im gemeinsamen Eckpunkt immer einen Innenwinkel ein. Vier Seiten umranden das Viereck.

    Folgende Aussagen sind falsch:

    - Ein Viereck besitzt immer $4$ Eckpunkte, $4$ Diagonalen und $2$ Seiten.

    Begründung: Im Viereck gibt es $4$ Seiten und $2$ Diagonalen.

    - Die Summe aller Außenwinkel im Viereck ergibt immer $360^\circ$.

    Begründung: Die Winkelsumme bezieht sich immer auf die Innenwinkel. Man bezeichnet sie daher auch als Innenwinkelsumme.

    - Die Seiten und Eckpunkte werden immer in alphabetischer Reihenfolge und mit dem Uhrzeigersinn beschriftet.

    Begründung: Es wird immer gegen den Uhrzeigersinn beschriftet.

    - Vierecke sind ebene, dreidimensionale geometrische Figuren.

    Begründung: Vierecke sind eben und damit zweidimensional.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

4.062

sofaheld-Level

6.574

vorgefertigte
Vokabeln

10.287

Lernvideos

42.420

Übungen

37.484

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden