Lernen mit Spaß!

Verbessere deine Noten mit sofatutor!

Lernen mit Spaß!

sofatutor kostenlos testen!

14.081+

14.081+ Bewertungen

Logarithmusfunktion

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Lucy lernt 5 Minuten 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Lucy übt 5 Minuten 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    89%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Lucy stellt fragen 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
30 Tage kostenlos testen

Testphase jederzeit online beenden

Bewertung

Sei der Erste und gib eine Bewertung ab!

Die Autor*innen
Avatar
Team Digital
Logarithmusfunktion
lernst du in der Oberstufe 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Grundlagen zum Thema Logarithmusfunktion

Nach dem Schauen dieses Videos wirst du in der Lage sein, die grundlegenden Eigenschaften von Logarithmusfunktionen zu nennen.

Zunächst lernst du, wie der Logarithmus grundsätzlich funktioniert. Anschließend siehst du, wie Logarithmusfunktionen in einem Koordinatensystem verlaufen. Abschließend lernst du, dass Logarithmusfunktionen die Umkehrfunktionen von Exponentialfunktionen mit gleicher Basis sind.

Logarithmusfunktionen

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Logarithmus, Basis, Exponent, Logarithmusfunktion und Exponentialfunktion.

Bevor du dieses Video schaust, solltest du bereits wissen, was ein Logarithmus ist.

Nach diesem Video wirst du darauf vorbereitet sein, mit Logarithmusfunktionen zu rechnen.

Transkript Logarithmusfunktion

Was haben wohl PH-Werte, die Angabe von Lautstärke in Dezibel und die Richterskala zur Kategorisierung von Erdbeben gemeinsam? Na liegt doch auf der Hand: All diese Messinstrumente greifen auf den Logarithmus zurück! Da lohnt es sich doch, mal einen genauen Blick auf die „Logarithmusfunktion“ zu werfen. Zunächst sollten wir noch einmal kurz wiederholen, wie der Logarithmus überhaupt definiert ist. Der Logarithmus ist letztendlich nichts anderes als die Antwort auf die Frage, mit welcher Zahl man eine gegebene Zahl potenzieren muss, um einen gegebenen Potenzwert zu erhalten. Wenn wir zum Beispiel bei dieser Gleichung das x – also den gesuchten Exponenten – ermitteln möchten, berechnen wir den Logarithmus von eintausend zur Basis zehn. Der Logarithmuswert ist in diesem Beispiel gleich drei, da zehn hoch drei gleich eintausend ist. Soweit zu den Basics. Doch wie genau können wir uns denn jetzt die Logarithmusfunktion vorstellen? Nun ja, Potenzfunktionen kennen wir bereits. Hier ist der Exponent eine feste Zahl und wir können für die „Basis x“ unterschiedliche Werte einsetzen, um die entsprechenden Funktionswerte zu berechnen. Steht hingegen in der Basis ein fester Wert und die Variable im Exponenten, haben wir es mit einer Exponentialfunktion zu tun. Bei der Logarithmusfunktion sieht es so ähnlich aus: Die Basis legen wir als Wert fest. Unsere „Variable x“ setzen wir jetzt in den Logarithmus ein. Die Funktion lautet dann: „f von x gleich Logarithmus von x zur Basis zwei“. Schauen wir uns das mal im Koordinatensystem an. Wenn wir in unsere Funktion den Wert zwei einsetzen, müssen wir den Logarithmus von zwei zur Basis zwei bestimmen. Das ist eins, da wir eine eins in den Exponenten einsetzen müssen, um das Ergebnis zwei zu erhalten. Also ist der Funktionswert unserer Funktion an der Stelle „x gleich zwei“ gleich eins. Der nächste Funktionswert, den wir relativ einfach bestimmen können, ist der Funktionswert von „x gleich vier“. Da zwei hoch zwei vier ergibt, ist zwei an dieser Stelle der entsprechende y-Wert. An der Stelle acht ist der Funktionswert dann gleich drei und so weiter. Ein wichtiger Funktionswert ist an der Stelle „x gleich eins“ gegeben. Weil wir den Potenzwert eins nur dann erhalten, wenn wir die Basis zwei mit Null potenzieren, ist „x gleich eins“ die Nullstelle unserer Funktion. Das gilt übrigens für jede Logarithmusfunktion, da wir bei jeder beliebigen Basis eins erhalten, wenn wir sie mit Null potenzieren. Wenn wir jetzt positive x-Werte einsetzen, die kleiner als eins sind, zum Beispiel ein Halb oder ein Viertel, erhalten wir negative Funktionswerte. Wir erinnern uns: Potenzen mit negativen Exponenten können wir auch als Brüche schreiben. Deshalb müssen die Funktionswerte für x-Werte zwischen Null und eins negativ sein. Jetzt können wir uns den Verlauf des Funktionsgraphen schon ungefähr vorstellen. Er sieht so aus. Auch die Funktionsgraphen von Logarithmusfunktionen mit einer anderen Basis haben einen ähnlichen Verlauf. Hier siehst du die die Logarithmusfunktionen mit den Basen drei und zehn. Schauen wir uns den Verlauf der Logarithmusfunktionen mal genauer an. Für größer werdende x Werte gehen die Funktionen gegen plus unendlich und für x-Werte, die sich der Null annähern, gegen minus unendlich. Die Graphen der Funktionen steigen daher im gesamten Definitionsbereich. Die Null und negative x-Werte sind dabei aus dem Definitionsbereich der Funktionen ausgeschlossen. Der Wertebereich deckt hingegen alle reellen Zahlen ab. Die Logarithmusfunktionen haben außerdem alle eine Nullstelle bei x gleich eins. Eine weitere interessante Eigenschaft wird ersichtlich, wenn wir zur der Logarithmusfunktion zur Basis zwei die Exponentialfunktion „zwei hoch x“ in das Koordinatensystem einzeichnen, und zusätzlich die Winkelhalbierende, sprich die Funktion „h von x gleich x“ eintragen. Wir erkennen: Die Funktion „Logarithmus von x zur Basis zwei“ ist die Spiegelung der Funktion „zwei hoch x“ an der Winkelhalbierenden. Das liegt daran, dass das Logarithmieren eine Umkehroperation zum Potenzieren ist. Somit ist die Logarithmusfunktion auch die Umkehrfunktion der entsprechenden Exponentialfunktion. Wieder was dazugelernt – fassen wir das Ganze nochmal kurz und knapp zusammen. Bei einer Logarithmusfunktion betrachten wir den Logarithmus zu einer festen Basis – zum Beispiel zur Basis zwei, drei oder zehn – von beliebigen positiven x-Werten. Alle Logarithmusfunktionen haben gemeinsam, dass sie nur für positive x-Werte definiert sind, und durch den Punkt „eins null“ verlaufen. Logarithmusfunktionen sind außerdem die Umkehrfunktionen der entsprechenden Exponentialfunktionen. Der Logarithmus ist nützlich, um sehr kleine oder auch sehr große Zahlen darzustellen. Das liegt daran, dass die Funktionswerte für größer werdende x-Werte im Gegensatz zu Exponentialfunktionen nur sehr sehr langsam wachsen. Das hilft uns vor allem auch in den Naturwissenschaften, da unsere Wahrnehmung häufig nicht linear, sondern logarithmisch funktioniert. Der Logarithmus zur Basis zehn kommt so zum Beispiel bei der bereits erwähnten Richterskala zum Einsatz. Ein Erdbeben der Stärke sieben ist zehnmal so stark wie ein Beben der Stärke sechs, hundertmal so stark wie ein Beben der Stärke fünf und so weiter. Dank dem Logarithmus können wir aber auch Zahlen, die so weit auseinanderliegen, übersichtlich in einer Skala zusammenfassen. Na dann bist du ja jetzt bestens gerüstet, wenn du in Zukunft Seismolog:in, Chemiker:in oder halt einfach Rockstar werden willst.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

2.685

sofaheld-Level

6.290

vorgefertigte
Vokabeln

10.222

Lernvideos

42.159

Übungen

37.248

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden