Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Nullstellen von Funktionen höheren Grades

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.4 / 7 Bewertungen
Die Autor*innen
Avatar
Team Digital
Nullstellen von Funktionen höheren Grades
lernst du in der Oberstufe 6. Klasse - 7. Klasse - 8. Klasse - 9. Klasse

Nullstellen von Funktionen höheren Grades Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Nullstellen von Funktionen höheren Grades kannst du es wiederholen und üben.
  • Beschreibe, wie man die Nullstellen einer Funktion höheren Grades bestimmen kann.

    Tipps

    Die Funktion $f(x)=x^3-2x^2+x = x(x-1)^2$ hat die Nullstellen $x_1=0$ und $x_2=1$.

    Um die Nullstelle der Funktion $f(x)=3x^3+x^2-4x+5$ zu berechnen, müssen wir die Gleichung $0=3x^3+x^2-4x+5$ lösen.

    Lösung

    Die Nullstellen einer Funktion sind die Stellen, an denen der Funktionsgraph die $x$-Achse schneidet. Eine Funktion kann eine, mehrere oder auch gar keine Nullstelle haben. Eine Polynomfunktion hat maximal so viele Nullstellen wie der Grad des Polynoms. Der Grad entspricht dabei der höchsten Potenz.

    Eine Funktion $3$. Grades hat genau drei Nullstellen.

    Diese Aussage ist also falsch. Gegenbeispiel: Die Funktion $f(x)=x^3-2x^2+x = x(x-1)^2$ hat die Nullstellen $x_1=0$ und $x_2=1$. Eine Funktion $3$. Grades kann drei, zwei oder eine Nullstelle haben.

    Um die Nullstellen einer Funktion zu berechnen, setzen wir ihren Funktionsterm gleich Null.

    Dies ist richtig. Um die Nullstelle der Funktion $f(x)=3x^3+x^2-4x+5$ zu berechnen, müssen wir also die Gleichung $0=3x^3+x^2-4x+5$ lösen. Dazu gehen wir je nach Funktionstyp unterschiedlich vor. Bei einer linearen Funktion können wir die Gleichung einfach durch Äquivalenzumformungen nach $x$ auflösen. Bei einer quadratischen Funktion können wir die Lösungsformel anwenden. Bei einer Funktion höheren Grades haben wir verschiedene Möglichkeiten:

    • Ausklammern
    • Polynomdivision
    • Substitution
    Manchmal ist es möglich, einen oder mehrere Faktoren auszuklammern. Dies kann helfen, die Nullstellen der Funktion zu bestimmen. Das Ziel ist es dabei, den Funktionsterm als Produkt (faktorisierte Form) zu schreiben.

    Ist eine Funktion in faktorisierter Form gegeben, dürfen wir die Nullstellen der einzelnen Faktoren bestimmen, um die Nullstellen der Funktion zu erhalten.

    Diese Aussage ist richtig, denn es gilt: Ein Produkt ist genau dann Null, wenn einer der Faktoren Null ist.

    Ist eine Nullstelle bekannt, können wir durch Substitution den Funktionsterm faktorisieren.

    Diese Aussage ist falsch. Ist eine Nullstelle bekannt, können wir durch Polynomdivision den Funktionsterm faktorisieren.

  • Berechne die Nullstellen der Funktion durch Substitution.

    Tipps

    Substituieren heißt ersetzen: Wir ersetzen $x^2$ durch eine neue Variable $z$.

    Wir berechnen zunächst die Werte für $z$ und im Anschluss die Nullstellen der Funktion $x_1$ bis $x_4$.

    Lösung

    Die Nullstellen einer Funktion sind die Stellen, an denen der Funktionsgraph die $x$-Achse schneidet. Um die Nullstellen einer Funktion zu berechnen, setzen wir ihren Funktionsterm gleich Null.

    $f(x)=\frac{1}{9}x^4-\frac{5}{4}x^2+\frac{9}{4}$

    Da hier im Funktionsterm nur Potenzen von $x$ vorkommen, deren Exponenten jeweils das Doppelte voneinander sind, können wir hier die Nullstellen durch Substitution bestimmen. Dazu gehen wir wie folgt vor:

    1. Wir substituieren, das heißt, wir ersetzen $x^2 \mapsto z$ und erhalten: $f(z)=\frac{1}{9}z^2-\frac{5}{4}z+\frac{9}{4}$
    2. Wir bestimmen die Nullstellen der Funktion mit der Lösungsformel: $z_{1/2} = \frac{-b \pm \sqrt{b^2-4ac}}{2a} = \frac{\frac{5}{4} \pm \sqrt{(-\frac{5}{4})^2-4\cdot \frac{1}{9} \cdot \frac{9}{4}}}{2 \cdot \frac{1}{9}} = \frac{\frac{5}{4} \pm \frac{3}{4}}{ \frac{2}{9}}$ und erhalten: $z_1=9$ und $z_2=\frac{9}{4}$
    3. Wir resubstituieren: $x_{1/2}= \pm \sqrt{z_1}$ und $x_{3/4}= \pm \sqrt{z_2}$
    4. Damit erhalten wir die Nullstellen: $x_1=+ \sqrt{9} = 3$; $x_2=- \sqrt{9}=-3$; $x_3=+ \sqrt{\frac{9}{4}}=\frac{3}{2}$; $x_4=- \sqrt{\frac{9}{4}}=-\frac{3}{2}$
  • Entscheide, bei welchen Funktionen die Substitution eine geeignete Methode zur Nullstellenfindung ist.

    Tipps

    Die Methode der Substitution kann angewendet werden, wenn im Funktionsterm nur Potenzen von $x$ vorkommen, deren Exponenten jeweils das Doppelte voneinander sind.

    Beispiel: $f(x)= x^6+3x^3-2$

    Hier kann die Substitution angewendet werden.

    Lösung

    Um die Nullstellen einer Funktion zu berechnen, setzen wir ihren Funktionsterm gleich Null. Wenn im Funktionsterm nur Potenzen von $x$ vorkommen, deren Exponenten jeweils das Doppelte voneinander sind, können wir die Nullstellen durch Substitution bestimmen.

    Dazu substituieren, also ersetzen wir eine Potenz von $x$ durch $z$. Wir können dann die Nullstellen der Funktion $f(z)$ bestimmen und anschließend resubstituieren.

    Wir überprüfen, ob bei den gegebenen Funktionen die Exponenten jeweils das Doppelte voneinander sind:

    • $f(x)=4z^4+z^2-5 \quad$ Es gilt: $4 = 2 \cdot 2 \quad \mapsto$ geeignet
    • $f(t)=t^6+3t^3 \quad$ Es gilt: $6 = 2 \cdot 3 \quad \mapsto$ geeignet
    • $f(z)=3x^4-x^2+7x \quad$ Hier lässt sich nichts substituieren, da die kleinste Potenz $x$ ist $\quad \mapsto$ nicht geeignet
    • $f(a) = a^8+4a^4-2 \quad$ Es gilt: $8 = 2 \cdot 4 \quad \mapsto$ geeignet
    • $f(x)=2x^2+2 \quad$ Hier können die Nullstellen direkt durch Auflösen der Gleichung $f(x)=0$ ermittelt werden$\quad \mapsto$ nicht geeignet
    • $f(z) = 3x^{12} - 4x^6-3 \quad$ Es gilt: $12 = 2 \cdot 6 \quad \mapsto$ geeignet
  • Bestimme die faktorisierte Form der Funktionen.

    Tipps

    Du kannst den faktorisierten Term ausmultiplizieren, um herauszufinden, welche Funktionen gleich sind.

    Beispiel:

    $x=3$ ist Nullstelle von $f(x)=2x^3-x^2-45$, denn:

    $f(3)=2\cdot 3^3-2^3-45=0$

    Ist eine Funktion in faktorisierter Form gegeben, dürfen wir die Nullstellen der einzelnen Faktoren bestimmen, um die Nullstellen der Funktion zu erhalten.

    Lösung

    Um die Nullstellen einer Funktion zu bestimmen, setzen wir ihren Funktionsterm gleich Null. Ist eine Funktion in faktorisierter Form gegeben, dürfen wir die Nullstellen der einzelnen Faktoren bestimmen, um die Nullstellen der Funktion zu erhalten.

    Wir können prüfen, ob ein gegebener $x$-Wert eine Nullstelle der Funktion ist, indem wir ihn in die Funktionsgleichung einsetzen und überprüfen, ob der Funktionswert Null ergibt.

    Wir haben also zwei Möglichkeiten, um die Aufgabe zu lösen:

    1. Die Nullstellen, welche wir in der faktorisierten Form ablesen können, in den ursprünglichen Term einsetzen.
    2. Den faktorisierten Term ausmultiplizieren.
    $\,$

    erste Funktion:
    $f(x)=3x^3-3x = 3(x+1) \cdot (x-1) \cdot x$ denn:

    • $x+1 = 0 \Leftrightarrow x_1=-1 \quad f(-1)=3 \cdot (-1)^3 - 3 \cdot (-1) = 0 \longrightarrow x=-1$ ist Nullstelle
    • $x-1 = 0 \Leftrightarrow x_2=1 \quad f(1)=3 \cdot 1^3 - 3 \cdot 1 = 0 \longrightarrow x=1$ ist Nullstelle
    • $x_3=0 \quad f(0)=3 \cdot 0^3 - 3 \cdot 0 = 0 \longrightarrow x=0$ ist Nullstelle
    oder:

    $3(x+1) \cdot (x-1) \cdot x = 3(x^2-1) \cdot x = (3x^2-3) \cdot x = 3x^3-3x$

    zweite Funktion:
    $f(x)=x^4+4x^3-3x^2-10x+8 = (x+4) \cdot (x+2) \cdot (x-1)^2$ denn:

    • $x+4 = 0 \Leftrightarrow x_1=-4 \quad f(-4)= (-4)^4 + 4 \cdot (-4)^3 - 3 \cdot (-4)^2 - 10 \cdot (-4) +8 = 0 \longrightarrow x=-4$ ist Nullstelle
    • $x+2 = 0 \Leftrightarrow x_2=-2 \quad f(-2)= (-2)^4 + 4 \cdot (-2)^3 - 3 \cdot (-2)^2 - 10 \cdot (-2) +8 = 0 \longrightarrow x=-2$ ist Nullstelle
    • $x-1 = 0 \Leftrightarrow x_3=1 \quad f(1)= 1^4 + 4 \cdot 1^3 - 3 \cdot 1^2 - 10 \cdot 1 +8 = 0 \longrightarrow x=1$ ist Nullstelle
    oder:

    $(x+4) \cdot (x+2) \cdot (x-1)^2 = (x+4) \cdot (x+2) \cdot (x^2-2x+1) = (x^2+6x+8) \cdot (x^2-2x+1) = x^4+4x^3-3x^2-10x+8$

    dritte Funktion:
    $f(x)=x^2+9x+8 = (x+8) \cdot (x+1)$

    • $x+1 = 0 \Leftrightarrow x_1=-1 \quad f(-1) = (-1)^2 + 9 \cdot (-1) +8 = 0 \longrightarrow x=-1$ ist Nullstelle
    • $x+8 = 0 \Leftrightarrow x_2=-2 \quad f(-8) = (-8)^2 + 9 \cdot (-8) +8 = 0 \longrightarrow x=-8$ ist Nullstelle
    oder:

    $(x+8) \cdot (x+1) = x^2+9x+8$

    vierte Funktion:
    $f(x)=x^3+x^2-6x = (x+3) \cdot (x-2) \cdot x$

    • $x+3 = 0 \Leftrightarrow x_1=-3 \quad f(-3)= (-3)^3 + (-3)^2 -6 \cdot (-3) = 0 \longrightarrow x=-3$ ist Nullstelle
    • $x-2 = 0 \Leftrightarrow x_2=2 \quad f(2)= 2^3 + 2^2 -6 \cdot 2 = 0 \longrightarrow x=2$ ist Nullstelle
    • $x_3=0 \quad f(0)= 0^3 + 0^2 -6 \cdot 0 = 0 \longrightarrow x=0$ ist Nullstelle
    oder:

    $(x+3) \cdot (x-2) \cdot x = (x+3) \cdot (x^2-2x) = x^3+x^2-6x$

  • Gib die Nullstellen der Funktionen an.

    Tipps

    Nullstellen sind die Stellen, an denen der Graph die $x$-Achse schneidet.

    Eine Funktion kann keine, eine oder mehrere Nullstellen haben.

    Diese Funktion hat vier Nullstellen:

    $x_1=-2$; $x_2=-1$; $x_3=1$; $x_4=2$

    Lösung

    Die Nullstellen einer Funktion sind die Stellen, an denen der Funktionsgraph die $x$-Achse schneidet. Dabei gibt es mehrere Möglichkeiten:

    • Schneidet die Funktion die $x$-Achse nicht, hat sie keine Nullstellen.
    • Schneidet die Funktion die $x$-Achse einmal, hat sie eine Nullstellen.
    • Schneidet die Funktion die $x$-Achse mehrmals, hat sie mehrere Nullstellen.
    $\,$

    Wir betrachten also die Funktionsgraphen:

    violetter Graph: Schneidet die $x$-Achse einmal $\mapsto$ eine Nullstelle $x=3$

    roter Graph: Schneidet die $x$-Achse nicht $\mapsto$ keine Nullstelle

    blauer Graph: Schneidet die $x$-Achse dreimal $\mapsto$ drei Nullstellen $x_1=-1$; $x_2=0$; $x_3=1$

    grüner Graph: Schneidet die $x$-Achse einmal $\mapsto$ eine Nullstelle $x=-2$

    Hinweis: Um die Nullstellen einer Funktion zu berechnen, setzen wir ihren Funktionsterm gleich Null.

  • Berechne die Nullstellen der Funktionen.

    Tipps

    Untersuche zunächst, ob du geschickt ausklammern kannst.

    Die Nullstellen der Funktion $h(x)$ kannst du durch Substitution ermitteln.

    Lösung

    Die Nullstellen einer Funktion sind die Stellen, an denen der Funktionsgraph die $x$-Achse schneidet. Um die Nullstellen einer Funktion zu berechnen, setzen wir ihren Funktionsterm gleich Null und lösen die so entstandene Gleichung. Dazu gehen wir je nach Funktionstyp unterschiedlich vor. Bei einer linearen Funktion können wir die Gleichung einfach durch Äquivalenzumformungen nach $x$ auflösen. Bei einer quadratischen Funktion können wir die Lösungsformel anwenden. Bei einer Funktion höheren Grades haben wir verschiedene Möglichkeiten:

    • Ausklammern
    • Polynomdivision
    • Substitution
    Wir betrachten die gegebenen Beispiele:

    erstes Beispiel: $f(x)=2x^3+8x^2-10x \quad$ Ausklammern:

    Manchmal können wir einen $x$-Term in der Funktionsgleichung ausklammern, so wie hier:

    $2x^3+8x^2-10x = x(2x^2+8x-10)$

    Dadurch können wir den Funktionsterm in faktorisierter Form schreiben. Dabei gilt: Ein Produkt ist genau dann Null, wenn einer der Faktoren Null ist. Eine Nullstelle der Funktion haben wir somit schon ermittelt:

    $x_1=0$

    Die weiteren Nullstellen können wir berechnen, indem wir den quadratischen Term gleich $0$ setzen und mit der Lösungsformel lösen:

    $x_{2/3} = \frac{-b \pm \sqrt{b^2-4ac}}{2a} = \frac{-8 \pm \sqrt{8^2-4 \cdot 2 \cdot (-10)}}{2 \cdot 2} = \frac{-8 \pm 12}{4}$

    Wir erhalten: $x_2=-5$ und $x_3=1$

    $\,$

    zweites Beispiel: $g(x)=x^3-x^2-8x+12 \quad$ Polynomdivision:

    Wenn bereits eine Nullstelle bekannt ist, können wir den Funktionsterm durch Polynomdivision faktorisieren. Wir rechnen also:

    $\begin{array}{rrlllllll} &x^3&-x^2&-8x&+12&:&(x+3)&=&x^2&-4x&+4&\\ \hline -& (x^3&+3x^2)\\ \hline && -x^2&-8x\\ -& &(-4x^2&-12x)\\ \hline &&& 4x&+12&\\ -&& &(4x&+12)\\ \hline &&&& 0\\ \end{array}$

    Wir können nun die Funktionsgleichung schreiben als:

    $f(x)= (x^2-4x+4) \cdot (x+3)$

    In dem quadratischen Term erkennen wir die binomische Formel:

    $x^2-4x+4 = (x-2)^2$

    Die zweite Nullstelle lautet also: $x_2=2$.

    $\,$

    drittes Beispiel: $h(x)=x^6-35x^3+216 \quad$ Substitution:

    Da hier im Funktionsterm nur Potenzen von $x$ vorkommen, deren Exponenten jeweils das Doppelte voneinander sind, können wir hier die Nullstellen durch Substitution bestimmen. Dazu substituieren wir $x^3 \mapsto z$ und erhalten:

    $f(z)=z^2-35z+216$

    Wir bestimmen die Nullstellen der Funktion mit der Lösungsformel:

    $z_{1/2} = \frac{-b \pm \sqrt{b^2-4ac}}{2a} = \frac{35 \pm \sqrt{(-35)^2-4 \cdot 1 \cdot 216}}{2 \cdot 1} = \frac{35 \pm 19}{2}$

    Wir erhalten: $z_1=27$ und $z_2=8$

    Wir resubstituieren: $x_{1}= \sqrt[3]{z_1}$ und $x_{2}= \sqrt[3]{z_2}$

    Damit erhalten wir die Nullstellen: $x_{1}= \sqrt[3]{27} =3$ und $x_{2}= \sqrt[3]{8} =2$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.090

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.447

Lernvideos

35.544

Übungen

33.097

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden