Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Betragsgleichungen lösen

Betragsgleichungen lernen: Grundlagen und Lösungsmethoden Erfahre, was ein Betrag bedeutet und wie Betragsgleichungen funktionieren. Lerne die verschiedenen Lösungsmethoden kennen, um Betragsgleichungen zu lösen. Interessiert? Dies und vieles mehr findest du im folgenden Text!**

Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 31 Bewertungen
Die Autor*innen
Avatar
Team Digital
Betragsgleichungen lösen
lernst du in der Unterstufe 3. Klasse - 4. Klasse

Betragsgleichungen lösen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Betragsgleichungen lösen kannst du es wiederholen und üben.
  • Ergänze den Text mit den passenden Begriffen.

    Tipps

    Ein Temperaturunterschied kann in zwei Richtungen gehen.

    Der Betrag einer Zahl besitzt nicht nur eine Lösung.

    Lösung

    Bei Jasmin zu Hause sind es $10 °C$.

    Die Temperatur des Reiseziels kennen wir nicht, also beschreiben wir sie mit der Variablen $x$. Der Temperaturunterschied zwischen ihrem Zuhause und dem Urlaubsort soll $20 °C$ betragen.

    Das kann ja bedeuten, dass die Temperatur $20 °C$ höher oder aber $20 °C$ niedriger ist.

    Jasmin hat vergessen, dass der Betrag einer Zahl immer positiv ist.

    Lass uns eine Gleichung aufstellen, um diese Situation zu beschreiben.

    $\left|x-10\right|=20$

    Der Ausdruck zwischen den Betragsstrichen kann also positiv oder negativ sein, also müssen wir zwei Gleichungen aufstellen.

    $x - 10 = 20$ oder $x - 10 = -20$

    Wir erhalten also auch zwei mögliche Lösungen:

    $x=30$ oder $x=-10$

    Arme Jasmin, sie hat sich auf $30 °C$ eingestellt, ist jetzt aber an einem Ort mit $-10 °C$.

    Kein Wunder, dass sie mit den Zähnen schlottert, statt in der Sonne zu brutzeln.

  • Ergänze die Lösungsschritte der Gleichungen

    Tipps

    Der Betrag einer Zahl ist immer positiv oder null.

    Äquivalenzumformungen können hier helfen.

    Lösung

    Beginnen wir mit der Lösung für die erste Gleichung:

    $\left|4x+20\right|=100$

    $\\$

    $\mathbf{Lösung~ 1:}$

    $\\$

    $4x+20 = 100$

    Subtrahieren wir $20$ von beiden Seiten, so erhalten wir:

    $4x =80$

    Teilen wir nun durch $4$, so erhalten wir:

    $x=20$

    $\\$

    $\mathbf{Lösung ~2:}$

    $\\$

    $4x+20 = - 100$

    Subtrahieren wir hier $20$ von beiden Seiten, so erhalten wir:

    $4x=-120$

    Und teilen wir hier durch $4$, erhalten wir als zweite Lösung:

    $x=-30$

    $\\$

    Nun zur Lösung der zweiten Gleichung:

    $\\$

    $\left|x-10\right|=20$

    $\\$

    $\mathbf{Lösung~ 1:}$

    $\\$

    $x-10= 20$

    Hier addieren wir lediglich $10$ zu beiden Seiten und wir erhalten als Lösung direkt:

    $x =30$

    $\\$

    $\mathbf{Lösung~ 2:}$

    $\\$

    $x-10 =- 20$

    Nachdem wir auch hier $10$ zu beiden Seiten addiert haben, erhalten wir als zweite Lösung:

    $x=-10$

  • Prüfe, welche Betragsgleichung zu welcher Aufgabenstellung gehört.

    Tipps

    Temperaturunterschied bedeutet, dass es sowohl wärmer als auch kälter sein kann. Es kann also zwei Lösungen geben.

    Ist die Temperatur zu Hause $10°C$ und der Temperaturunterschied zum Urlaubsort soll $20°C$ entsprechen, so ergibt sich als Gleichung: $\left|x-10\right|=20$

    Lösung

    Da der Temperaturunterschied jeweils das Ergebnis aus der unbekannten Temperatur des Urlaubsziels, also $x$, und der bekannten Temperatur zu Hause ist, ist der Temperaturunterschied jeweils auf der rechten Seite des Gleichheitszeichens.

    $\\$

    Die Differenz der Temperatur im Urlaubsziel und der Temperatur zu Hause befindet sich also auf der linken Seite des Gleichheitszeichens. Diese Rechnung befindet sich in Betragsstrichen, da der Temperaturunterschied entweder niedriger oder höher sein kann.

    $\\$

    Beginnen wir nun mit der Gleichung für das erste Angebot:

    Es besteht ein Temperaturunterschied von $15°C$ zwischen dem Urlaubsziel und der Temperatur zu Hause.

    Es ergibt sich hier als Gleichung also:

    $\left|x-10\right|=15$

    $\\$

    Schauen wir uns das nächste Angebot an:

    Es besteht ein Temperaturunterschied von $10°C$ zwischen dem Urlaubsziel und der Hälfte der Temperatur zu Hause.

    Die Hälfte der Temperatur zu Hause ergibt sich durch $10:2=5$ und somit erhalten wir für die Gleichung:

    $\left|x-5\right|=10$

    $\\$

    Stellen wir nun die Gleichung für das nächste Angebot auf:

    Es besteht ein Temperaturunterschied von $5°C$ zwischen dem Urlaubsziel und dem Dreifachen der Temperatur zu Hause.

    Das Dreifache der Temperatur zu Hause ist hier also $3\cdot10=30$. Somit ergibt sich für die Gleichung:

    $\left|x-30\right|=5$

    $\\$

    Schauen wir uns nun noch das letzte Angebot an:

    Es besteht ein Temperaturunterschied von $20°C$ zwischen dem Urlaubsziel und einer Temperatur, die $10°C$ höher ist als die Temperatur zu Hause.

    Die $10°C$ höhere Temperatur ist also $10+10=20$.

    Es ergibt sich als Gleichung also:

    $\left|x-20\right|=20$

  • Sortiere die Betragsgleichungen.

    Tipps

    Um die Betragsgleichung zu lösen, musst du dir zwei verschiedene Gleichungen ansehen.

    Zum Ordnen musst du zunächst entscheiden, welche der beiden Lösungen einer Betragsgleichung die größere ist. Dabei müssen nicht immer beide Lösungen ausgerechnet werden.

    Lösung

    Berechnen wir die verschiedenen Lösungen der Betragsgleichungen, können wir entscheiden, welche dieser Gleichungen das größte und welche das kleinste Ergebnis enthält.

    $\\$

    Fangen wir mit der ersten Gleichung an:

    $\left|x-30\right|=150$

    Lösung $1$:

    $x-30=150$

    Addieren wir $30$ zu beiden Seiten, erhalten wir als erste Lösung:

    $x=180$

    Betrachten wir die Gleichung für die zweite Lösung, also $x-30=-150$, erkennen wir direkt, dass das Ergebnis dieser Gleichung eine negative Zahl sein wird. $180$ ist hier somit das größere Ergebnis.

    $\\$

    Betrachten wir die nächste Betragsgleichung:

    $\left|2x-40\right|=80$

    Lösung $1$:

    $2x-40=80$

    Addiert man $40$ zu beiden Seiten, erhalten wir:

    $2x=120$

    Teilt man hier durch $2$, ergibt sich als Lösung:

    $x=60$

    Auch hier kann man beim Betrachten der zweiten Gleichung, also $2x-40=-80$, direkt erkennen, dass die Lösung eine negative Zahl ist, also kleiner als $60$.

    $\\$

    Betrachten wir als Nächstes $\left|4x-30\right|=50$

    Lösung $1$:

    $4x-30=50$

    Addiert man $30$ zu beiden Seiten, ergibt sich:

    $4x=80$

    Und teilt man dann durch $4$, ergibt sich als Lösung:

    $x=20$

    Auch hier erkennt man, dass die zweite Lösung, also die Lösung der Gleichung $4x-30=-50$, wieder eine negative Zahl ist.

    $\\$

    Betrachten wir nun die letzte Gleichung:

    Lösung $1$:

    $x+15=30$

    Subtrahiert man $15$ von beiden Seiten, ergibt sich als Lösung hier:

    $x=15$

    Auch hier ist die Lösung der zweiten Gleichung, also $x+15=-30$, eine negative Zahl.

    $\\$

    Es ergibt sich also hier als Reihenfolge:

    $\left|x-130\right|=150$

    $\left|2x-40\right|=80$

    $\left|4x-30\right|=50$

    $\left|x=15\right|=80$

  • Nenne äquivalente Gleichungen für die Betragsgleichung.

    Tipps

    Der Betrag einer Zahl ist immer positiv oder null.

    Eine Betragsgleichung hat immer zwei Lösungen.

    Lösung

    Wenn wir die Betragsgleichung berechnen, werden wir sehen, welche Antworten hier richtig sind: $\left|4x+20\right|=100$

    $\\$

    Lösung 1:

    $4x+20= 100$

    Subtrahieren wir $20$ von beiden Seiten, so erhalten wir:

    $4x =80$

    Teilen wir nun durch $4$, so ergibt sich:

    $x=20$

    $\\$

    Lösung 2:

    $4x+20 =- 100$

    Subtrahieren wir hier $20$ von beiden Seiten, so erhalten wir:

    $4x=-120$

    Und teilen wir hier durch $4$, ist die zweite Lösung:

    $x=-30$

    $\\$

    Die richtigen Antworten hier sind also:

    $4x+20+100$, $4x+20=-100$, $x=20$ und $x=-30$

  • Ermittle die Rechenschritte und Lösungen der jeweiligen Betragsgleichung.

    Tipps

    Eine Betragsgleichung kann zwei Lösungen besitzen.

    Das Durchführen der Rechnungen kann dir dabei helfen, die verschiedenen Gleichungen zuzuordnen.

    Lösung

    Führt man die Rechnungen der jeweiligen Betragsgleichungen durch, findet man die jeweiligen Zuordnungen ganz einfach.

    $\\$

    Für die erste Betragsgleichung ist die Rechnung folgende:

    $\left|x-5\right|=2$

    Lösung 1:

    $x-5=2$

    Addiert man zu beiden Seiten $5$, so ergibt sich die Lösung:

    $x=7$

    Lösung 2:

    $x-5=-2$

    Addiert man wieder $5$ zu beiden Seiten, ergibt sich hier:

    $x=3$

    $\\$

    Schauen wir uns die nächste Betragsgleichung an:

    $\left|x+19\right|-2=30$

    Hier muss man zunächst die 2 addieren, damit der Betragsausdruck auf der einen Seite isoliert wird. Man erhält also:

    $\left|x+19\right|=32$

    $\\$

    Nun können wir uns die zwei Lösungen wieder separat ansehen.

    Lösung 1:

    $x+19=32$

    Subtrahiert man $19$ von beiden Seiten, erhält man:

    $x=13$

    Lösung 2:

    $x+19=-32$

    Subtrahiert man hier $19$ von beiden Seiten, erhält man:

    $x=-51$

    $\\$

    Schauen wir uns nun noch die letzte Gleichung an:

    $\left|2x-25\right|=40$

    Lösung 1:

    $2x-25=40$

    Addiert man $25$ zu beiden Seiten, ergibt sich:

    $2x=65$

    Teilt man nun durch $2$, ergibt sich als Lösung:

    $x=32,5$

    Lösung 2:

    $2x-25=-40$

    Addiert man hier $25$ zu beiden Seiten, ergibt sich:

    $2x=-15$

    Teilt man dann durch $2$, erhält man für die Lösung

    $x=-7,5$