Gleichungen mit Variablen auf beiden Seiten lösen
Löse Gleichungen mit Variablen auf beiden Seiten: Erlerne, Gleichungen umzuformen, um den Wert der gesuchten Variablen zu bestimmen. Finde Schritt-für-Schritt-Beispiele, wie du komplexe Gleichungen erfolgreich lösen kannst. Interessiert? Das und vieles mehr erwartet dich im folgenden Text!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Gleichungen mit Variablen auf beiden Seiten lösen
Lösen von Gleichungen mit Variablen auf beiden Seiten – Anleitung
Um Gleichungen mit Variablen lösen zu können, nutzen wir die Äquivalenzumformungen. Dabei wird eine Gleichung so umgeformt, dass sich ihr Wert nicht verändert. So können wir eine Gleichung nach der gesuchten Variablen umstellen und ihren Wert ermitteln. Dabei müssen wir beachten, dass wir auf beiden Seiten der Gleichung dieselbe Veränderung vornehmen. Eine ausführliche Erklärung findest du im Video über die Äquivalenzumformung.
Im Folgenden schauen wir uns anhand von Beispielen an, wie man Gleichungen mit Variablen auf beiden Seiten lösen kann.
Wie löst man Gleichungen mit Variablen auf beiden Seiten?
Schauen wir uns dafür zunächst die folgende Gleichung mit der Variablen auf beiden Seiten an:
Wir wollen diese Gleichung nun nach auflösen. Auch hier nutzen wir die Äquivalenzumformungen, um allein auf einer Seite stehen zu haben. Schrittweises Vorgehen hilft uns dabei, den Überblick zu behalten.
Zunächst subtrahieren wir auf beiden Seiten :
Nun subtrahieren wir auf beiden Seiten :
Im letzten Schritt dividieren wir beide Seiten durch :
Für haben wir den Wert erhalten.
Gleichungen mit Variablen auf beiden Seiten – Aufgabe
Schauen wir uns nun ein etwas komplizierteres Beispiel an.
Auch hier hilft uns schrittweises Vorgehen, damit wir beim Lösen der Gleichung nicht durcheinanderkommen. Dafür vereinfachen wir die Gleichung zunächst einmal.
Schritt 1: vereinfachen
Mithilfe des Distributivgesetzes können wir die Klammern auflösen. Dafür multiplizieren wir die Zahl vor der Klammer, also die , einzeln mit den Zahlen in der Klammer. Dieser Vorgang wird auch Ausmultiplizieren genannt. Eine ausführliche Erklärung findest du im Video über das Distributivgesetz.
Die Gleichung lautet nun:
Um die Gleichung übersichtlicher zu machen, können gleichartige Terme auf jeder Seite einzeln zusammengefasst werden. So können wir auf der linken Seite und zu zusammenfassen.
Schritt 2: umstellen
Mithilfe der Äquivalenzumformungen stellen wir die Gleichung so um, dass alle gleichartigen Terme auf jeweils einer Seite stehen. So wollen wir alle Terme mit einem auf der einen und alle Terme ohne auf der anderen Seite stehen haben. Dafür addieren wir zunächst auf beiden Seiten .
Nun subtrahieren wir auf beiden Seiten und erhalten:
Schritt 3: nach auflösen
Um die Gleichung nun nach aufzulösen, müssen wir nur noch beide Seiten durch dividieren.
Für erhalten wir den Wert .
Gleichungen mit Variablen auf beiden Seiten – Übungen
Zusätzlich zum Text und dem Video findest du hier auf der Seite noch Übungen und Arbeitsblätter zum Thema Gleichungen mit Variablen auf beiden Seiten lösen.
Transkript Gleichungen mit Variablen auf beiden Seiten lösen
Gleichungen mit Variablen auf beiden Seiten lösen
Erik und Johanna besuchen eine Zoohandlung, um neue schillernde Freunde für ihre Aquarien zu kaufen. Beide haben gleich viel Geld dabei.
Einleitung ins Thema
Erik kauft zwei Regenbogen-Blinkys und zehn graue Guppys. Johanna liebt Regenbogen-Blinkys, deshalb kauft sie 5 davon und nur einen Guppy. Beide haben nun ihr ganzes Geld ausgegeben. Als Erik Johannas buntes Aquarium sieht, ist er traurig, dass er nicht noch einen weiteren Regenbogen-Blinky gekauft hat. Er fragt sich: Wie viele graue Guppys muss er für einen weiteren Blinky eintauschen? Um das herauzufinden, kann Erik eine Gleichung mit derselben Variablen auf beiden Seiten aufstellen.
Rückblick: Was ist eine Gleichung?
Erinnerst du dich? Eine Gleichung ist wie eine Waage. Damit sie im Gleichgewicht bleibt, muss du alle Rechenoperationen, die du auf einen Seite ausführst, auch auf der anderen Seite durchführen. Johanna hat fünf Regenbogen-Blinkys und einen grauen Guppy gekauft. Für den gleichen Geldbetrag hat Erik zwei Blinkys und zehn Guppys gekauft. Die Waage ist also im Gleichgewicht.
Berechnung der Beispielaufgabe
Ein grauer Guppy kostet 1€. Deshalb können wir die Gleichung 5x + 1 = 2x + 10 aufstellen. x steht für den Betrag, den ein Regenbogen-Blinky kostet. Um herauszufinden, wie viele graue Guppys dem Preis von einem Regenbogen-Blinky entsprechen, musst du die Gleichung nach x auflösen, indem du mithilfe von Umkehroperationen alle x allein auf eine Seite der Gleichung bringst. 5x plus 1 ist gleich 2x plus 10. Zuerst subtrahieren wir von beiden Seiten 1: 5x ist gleich 2x plus 9. Als nächstes subtrahieren wir 2x von beiden Seiten der Gleichung. So bleibt die Waage im Gleichgewicht. 3x ist gleich 9. Um nach x aufzulösen, nutzen wir die Umkehroperation der Multiplikation: Wir dividieren beide Seiten durch 3. [entfällt!] x ist also gleich 3. Das heißt, ein Regenbogen-Blinky kostet genauso viel wie drei graue Guppys. Erik kann deshalb 3 Guppys gegen einen Blinky umtauschen. Das freut ihn!
Beispielaufgabe 2
Lass uns nun einen Blick auf ein etwas komplizierteres Beispiel werfen: 3 mal [...] Klammer auf [...] 2x minus 5 [...] Klammer zu [...] plus 10 [...] ist gleich 4x plus 9 Zum Auflösen der Klammern nutzt du das Distributitvgesetz und multiplizierst aus. 3 mal 2x ist gleich 6x und 3 mal -5 ist gleich -15. Das ergibt 6x - 15 + 10 ist gleich 4x + 9. Um das Ganze übersichtlicher zu machen, kannst du gleichartige Terme auf jeder Seite der Gleichung zusammenfassen. Das ergibt 6x minus 5 ist gleich 4x plus 9. Jetzt nutzt du Umkehroperationen, um alle gleichartigen Terme auf jeweils eine Seite zu bringen. Überlege, was du auf welche Seite bringen möchtest, um möglichst einfache Gleichungen zu haben. Hier addieren wir zuerst auf jeder Seite der Gleichung 5. Wir erhalten die Gleichung 6x ist gleich 4x plus 14. Jetzt subtrahieren wir noch 4x auf jeder Seite. Das ergibt die Gleichung 2x ist gleich 14. Danach nutzt du die Umkehroperation, um nach x aufzulösen. Dividiere beide Seiten der Gleichung durch 2. x ist gleich 7. Gehe bei Gleichungen wie diese immer Schritt für Schritt vor, um den Überblick zu behalten.
Ende
Wie es wohl den Fischen geht? Friedlich ziehen sie ihre Bahnen... Au Backe - noch ein Fan von Regenbogen Blinkeys...
Gleichungen mit Variablen auf beiden Seiten lösen Übung
-
Stelle eine lineare Gleichung für Eriks Problem auf.
-
Beschreibe das Vorgehen beim Umstellen einer linearen Gleichung mit Variablen auf beiden Seiten.
-
Bestimme die Lösung der linearen Gleichung mit Variablen auf beiden Seiten.
-
Bestimme die Unbekannte in den vorgegebenen linearen Gleichungen.
-
Berechne die Variable durch Umstellen der Gleichung.
-
Bestimme die gesuchte lineare Gleichung und löse diese durch sinnvolles Umstellen.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
7.734
Lernvideos
37.178
Übungen
32.408
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt
Sehr gut erklärt bro
Mega gutes Video, hat mir echt geholfen :)
Mega Video, super erklärt🤭 Könntet ihr das nächste mal nochmal mehr Beispiele machen? Ich habe nähmlich als erstes bei der 2 Aufgabe die Variablen zusammen „gepackt“ , aber es kam das gleiche Ergebnis raus. IST ABER NICHT SCHLIMM!! Nicht das ihr euch angegriffen fühlt😅❤️🤭
Mega gut wärn noch ein paar mehr Beispiele wäre es perfekt
Super