30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Brüche multiplizieren – Übung

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Lucy lernt 5 Minuten 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Lucy übt 5 Minuten 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    89%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Lucy stellt fragen 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
30 Tage kostenlos testen

Testphase jederzeit online beenden

Bewertung

Ø 4.0 / 2 Bewertungen

Die Autor*innen
Avatar
Team Digital
Brüche multiplizieren – Übung
lernst du in der Unterstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse

Grundlagen zum Thema Brüche multiplizieren – Übung

Nach dem Schauen dieses Videos wirst du in der Lage sein, Brüche zu multiplizieren.

Zunächst lernst du, wie du Brüche vor dem Multiplizieren noch kürzen kannst Anschließend siehst du, wie du gemischte Zahlen mit Brüchen multiplizieren kannst. Abschließend erfährst du, wie du mehrere Brüche miteinander multiplizieren kannst.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Brüche, Zähler, Nenner, Multiplikatio und Kürzen.

Bevor du dieses Video schaust, solltest du bereits die Multiplikation von Brüchen grundsätzlich kennen. Außerdem solltest du grundlegendes Wissen zu Brüchen haben.

Nach diesem Video wirst du darauf vorbereitet sein, zu lernen, wie man Brüche dividiert.

Transkript Brüche multiplizieren – Übung

Mooin! Das ist Peter. Peter denkt sich: „Das Multiplizieren von Brüchen ist ja einfach!“ Und rechnet einfach drauf los. Schon hat er sich verrechnet! Sei nicht wie Peter. Schau dir lieber in diesem Video an, wie's mit ein bisschen Übung richtig geht! Grundsätzlich hat der Peter ja Recht! Brüche multiplizieren ist wirklich nicht schwer. Wir multiplizieren zum Beispiel ein Fünftel mit zwei Dritteln, indem wir einfach „Zähler mal Zähler“, und „Nenner mal Nenner“ rechnen. Schon haben wir unser Ergebnis: zwei Fünfzehntel. Das können wir uns so vorstellen: Wenn wir ein Fünftel von einem Ganzen betrachten und davon dann nochmal den Anteil „zwei Drittel“, bleibt insgesamt der Anteil „zwei Fünfzehntel“. Gar nicht so schwer! Trotzdem solltest du beim „Multiplizieren von Brüchen“ einige Tipps und Tricks kennen, um dir Rechenarbeit zu sparen und Fehler zu vermeiden. In diesem Video schauen wir uns deshalb mal an, wie das Ganze funktioniert, wenn: wir vor dem Multiplizieren noch kürzen können, wir Brüche mit ganzen oder gemischten Zahlen multiplizieren, und zum Schluss auch, wie wir mehr als nur zwei Brüche miteinander multiplizieren. Also gut, zunächst schauen wir uns das Kürzen an. Immer wenn du Brüche – wie diese hier – multiplizieren möchtest, solltest du zunächst genau hinschauen und überlegen, ob du vorher kürzen kannst. Wenn wir hier einfach drauflos rechnen würden, müssten wir mit recht hohen Zahlen rechnen. Und wir wollen es uns schließlich nicht komplizierter machen als nötig, oder? Mit ein bisschen Übung im Kürzen erkennen wir bei diesen beiden Brüchen schnell, dass der eine mit vier, und der andere mit fünf gekürzt werden kann. So sieht die Aufgabe doch schon viel leichter aus! Und dann müssen wir nur noch multiplizieren. Jetzt immer nochmal kurz überlegen, ob wir noch kürzen können – Tatsächlich! Mit zwei. So kommen wir auf ein schönes Ergebnis. Nächste Aufgabe: Hier fällt es einem vielleicht nicht direkt ins Auge, aber auch bei dieser Aufgabe können und sollten wir kürzen, bevor wir die beiden Brüche miteinander multiplizieren. Das wird deutlich, wenn wir die beiden Brüche zunächst zu einem Bruch zusammenfassen. Jetzt sehen wir, dass wir vier und acht mit vier kürzen können. Und auch drei und neun lassen sich kürzen – nämlich mit drei. Wir müssen nicht jedes mal ausführlich aufschreiben, mit welcher Zahl wir kürzen. Die Methode „Alte Zahl durchstreichen und neue Zahl dran schreiben“ funktioniert auch super! Schon stellt uns auch diese Aufgabe nicht mehr vor allzu große Schwierigkeiten. Sieh mal einer an, auch das ergibt ein Sechstel! Dann können wir uns ja mal anschauen, wie die Multiplikation mit ganzen oder gemischten Zahlen funktioniert. Grundsätzlich ändert sich eigentlich nichts! Wir müssen die entsprechende Zahl nur zuerst in einen unechten Bruch umwandeln. Schauen wir uns das direkt mal mit einer gemischten Zahl an! Wir wollen „zwei-vier-Fünftel“ mit „ein-Siebtel“ multiplizieren. Dazu müssen wir „zwei-vier-Fünftel“ also zuerst umformen. Wir behalten den Nenner einfach bei, und addieren jetzt zu der vier im Zähler noch zwei Ganze, also zehn Fünftel. Das entspricht vierzehn Fünfteln. Und jetzt können wir wie gewohnt multiplizieren. Aber wir sind nicht voreilig und kürzen natürlich vorher noch! Das Ergebnis ist also zwei Fünftel! Zum Abschluss eine etwas schwierigere Aufgabe: Hier sollen sogar drei Brüche miteinander multipliziert werden. Jetzt bist du an der Reihe! Pausiere das Video doch kurz und finde die Zahlen, die man kürzen kann. Kleiner Tipp: Grundsätzlich funktioniert das genauso wie mit zwei Brüchen. Fasse die Brüche also am Besten erstmal in einem Bruch zusammen. Wenn du fertig bist, kannst du dir die Lösung anschauen: Wenn wir die Zähler und Nenner jeweils in einem Bruch zusammengefasst haben, sehen wir schon ganz gut, dass wir kürzen können! Denn neunundvierzig ist durch sieben teilbar und zweiundsiebzig durch acht. Dann ist die Rechnung deutlich einfacher, aber wir können tatsächlich nochmal mit drei kürzen! So kommen wir auf sieben Dreiunddreißigstel. Zeit für eine Zusammenfassung! Wenn wir Brüche multiplizieren, gilt grundsätzlich: „Zähler mal Zähler und „Nenner mal Nenner“. Dabei ist es aber echt hilfreich, immer darauf zu achten, ob wir kürzen können! Denn das kann viel Rechenarbeit sparen, wie zum Beispiel bei dieser Aufgabe! Manchmal kann auch mehrfach gekürzt werden. Das können wir am Ende nochmal überprüfen: Wenn wir unser Ergebnis nicht weiter kürzen können, passt es. Ansonsten kürzen wir einfach das Ergebnis noch schnell. Wenn wir mit ganzen oder gemischten Zahlen rechnen, wandeln wir diese außerdem zuerst in unechte Brüche um. Wenn wir diese Tipps und Tricks auf dem Kasten haben, können wir problemlos auch mehrere Brüche multiplizieren. Ohne dabei Zeit und Nerven zu verlieren. Und wie sieht's bei Peter aus? Oh, der verliert langsam die Nerven. Kann dem mal jemand helfen?!

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

3.649

sofaheld-Level

6.574

vorgefertigte
Vokabeln

10.220

Lernvideos

42.085

Übungen

37.188

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden