40%

Cyber Monday-Angebot – nur bis zum 4.12.2022

sofatutor 30 Tage lang kostenlos testen & dann 40 % sparen!

Multiplikation und Division von natürlichen Zahlen mit Brüchen – Merkregeln

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 3.5 / 24 Bewertungen

Die Autor*innen
Avatar
Team Digital
Multiplikation und Division von natürlichen Zahlen mit Brüchen – Merkregeln
lernst du in der Unterstufe 1. Klasse - 2. Klasse

Grundlagen zum Thema Multiplikation und Division von natürlichen Zahlen mit Brüchen – Merkregeln

Nach dem Schauen dieses Videos wirst du in der Lage sein, natürliche Zahlen mit Brüchen zu multiplizieren und durch Brüche zu dividieren.

Zunächst lernst du, wie du natürliche Zahlen mit Brüchen dividierst. Anschließend lernst du, wie du natürliche Zahlen durch Brüche dividieren kannst. Abschließend lernst du, wie du Brüche durch natürliche Zahlen dividieren kannst.

Multiplikation Division natürliche Zahl Bruch

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie natürliche Zahl, Bruch, Multiplikation, Divison und Kehrwert.

Bevor du dieses Video schaust, solltest du bereits wissen, wie Brüche aufgebaut sind und wie man Brüche kürzt und erweitert.

Nach diesem Video wirst du darauf vorbereitet sein, zu lernen, wie man Brüche durch Brüche dividiert.

Transkript Multiplikation und Division von natürlichen Zahlen mit Brüchen – Merkregeln

Süß, sauer und zuweilen saftig! Vor allem aber lecker und gesund! Obst ist echt ne prima Sache und super wichtig für eine gesunde Ernährung! Wozu wir Orangen, Äpfel, Melonen und Co noch gebrauchen können? Na, zum Beispiel um uns die „Multiplikation und Division von natürlichen Zahlen mit Brüchen“ zu veranschaulichen. Schauen wir uns zuerst an, wie wir natürliche Zahlen mit Brüchen multiplizieren können! Hier haben wir ein Stück Wassermelone! Das können wir ja mal in Achtel teilen. Für eine Portion Obstsalat nehmen wir davon drei Stücke, also drei Achtel. Wie viele Stücke brauchen wir dann für zwei Portionen? Genau! Sechs Achtel! Doch welche Rechnung steckt hinter dieser Erkenntnis? Um auf unser Ergebnis zu kommen, haben wir „zwei mal drei Achtel“ betrachtet, also zwei mit drei Achteln multipliziert. Von den natürlichen Zahlen weißt du bereits, dass die Multiplikation nichts anderes ist als wiederholte Addition. Drei mal fünf ist so zum Beispiel gleich fünf plus fünf plus fünf, also fünfzehn. Da gilt so auch für die Multiplikation einer natürlichen Zahl mit einem Bruch. „Zwei mal drei Achtel“ sind genauso viel wie „drei Achtel plus drei Achtel“, sprich sechs Achtel. Ein weiteres Beispiel: Wir multiplizieren drei mit zwei Fünfteln. Das ist das gleiche wie zwei Fünftel plus zwei Fünftel plus zwei Fünftel, also insgesamt sechs Fünftel. Wenn wir genau hinsehen, erkennen wir: Um die drei mit zwei Fünfteln zu multiplizieren, müssen wir nur den Zähler des Bruches mit drei multiplizieren. Der Nenner bleibt dabei gleich. Das können wir ja schonmal in einem ersten Merksatz festhalten! Wir multiplizieren eine natürlichen Zahl mit einem Bruch, indem wir den Zähler mit dieser Zahl multiplizieren und den Nenner beibehalten. Alle klar! Als nächstes wollen wir natürliche Zahlen durch Brüche teilen, also dividieren. Zum Beispiel zwei geteilt durch ein Viertel. Was könnte da wohl rauskommen? Das machen wir uns an zwei Äpfeln klar, die wir in Viertel aufteilen. Denn wir müssen herausfinden, wie oft ein Viertel in die Zwei passt. Wie wir sehen, acht mal. Acht Viertel ergeben wieder zwei Ganze. Erkennst du schon, wie wir bei unserer Divisionsaufgabe rechnen können, um das Ergebnis acht zu erhalten? Wir mulitplizieren die Zwei mit dem Nenner des Bruches! Genauer gesagt: Wir bilden den Kehrwert des Bruches, vertauschen also Zähler und Nenner, und multiplizieren anschließend den Zähler! Schon haben wir unseren zweiten Merksatz: Wir dividieren eine natürliche Zahl durch einen Bruch, indem wir sie mit dem Kehrwert des Bruches multiplizieren. Bei dem Kehrwert eines Bruches sind Zähler und Nenner vertauscht. Dazu noch ein Beispiel. Wir wollen vier durch zwei Drittel dividieren. Dafür bilden wir zunächst den Kehrwert von dem Bruch. Das sind drei Halbe. Jetzt müssen wir nach dem ersten Merksatz nur noch den Zähler mit vier multiplizieren, und erhalten so zwölf Halbe. Zwölf geteilt durch zwei ist sechs. Zum Abschluss schauen wir uns noch den umgekehrten Fall an. Wir möchten einen Bruch durch eine natürliche Zahl dividieren. Nehmen wir mal an von der Melone sind noch fünf Achtel über. Und die wollen wir jetzt unter drei Leuten aufteilen. Wie klappt das? Jeder bekommt ein Stück und du bekommst den Rest? Mathematisch gesehen ist das nicht ganz richtig. Wie können wir es also exakt ausrechnen? Eine Möglichkeit fair zu teilen besteht auf jeden Fall darin, die Achtel jeweils nochmal durch drei zu teilen. So werden aus fünf Achteln fünfzehn Vierundzwanzigstel. Fünfzehn Vierundzwanzigstel können wir gut in drei gleich große Portionen aufteilen, jeder bekommt dann Fünf vierundzwanzigstel. Fünf Achtel geteilt durch drei ergibt also fünf Vierundzwanzigstel. Siehst du schon welche Regel wir aus diesem Beispiel ableiten können? Genau! Acht mal drei ergibt vierundzwanzig. Das heißt: Wir dividieren einen Bruch durch eine natürliche Zahl, indem wir den Nenner des Bruches mit der natürlichen Zahl multiplizieren und den Zähler beibehalten! Auch zu diesem Merksatz schauen wir uns noch ein Beispiel an. Wir dividieren den Bruch sieben Neuntel durch vier. Die Lösung erhalten wir ganz einfach, indem wir den Nenner, also die Neun mit vier multiplizieren. Den Zähler behalten wir einfach bei das ergibt sieben sechsunddreißigstel. Zeit für eine Zusammenfassung! Hier siehst du die Merksätze zur Multiplikation einer natürlichen Zahl mit einem Bruch, zur Division einer natürlichen Zahl durch einen Bruch und zur Division eines Bruches durch eine natürliche Zahl nochmal auf einen Blick. Mit ein bisschen Übung haben wir die Bruchrechnung dann voll im Griff! Und was machen wir jetzt mit dem ganzen Obst? Ah ja, Eisbecher, soso. Von wegen gesund!

4 Kommentare

4 Kommentare
  1. Cooles video

    Von Mahmood, vor 2 Monaten
  2. Ich schreibe morgen, wünscht mir Glück!!

    Von Nicole, vor 6 Monaten
  3. doch,das,ist,gesund,es,hat,OBST,drin😆

    Von swissdreamer, vor 6 Monaten
  4. hatte mir geholfen kappa

    Von Colin, vor 7 Monaten
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

4.062

sofaheld-Level

6.574

vorgefertigte
Vokabeln

10.280

Lernvideos

42.385

Übungen

37.448

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden