30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Natürliche Zahlen durch Brüche teilen

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 3.4 / 25 Bewertungen

Die Autor*innen
Avatar
Team Digital
Natürliche Zahlen durch Brüche teilen
lernst du in der Unterstufe 1. Klasse - 2. Klasse

Grundlagen zum Thema Natürliche Zahlen durch Brüche teilen

Inhalt

Natürliche Zahlen durch Brüche teilen – Mathe

Heute lernst du, wie man den Kehrwert des Divisors bildet. Anschließend können wir mit diesem Kehrwert die Divisionsaufgabe lösen. Wir schauen uns im folgenden Text gemeinsam anhand von Beispielen an, wie man dabei vorgeht.

Natürliche Zahl durch einen Bruch dividieren – Beispiel

Betrachten wir zunächst als Beispiel einen vorbereiteten Saft von $3$ Litern, der auf mehrere Personen aufgeteilt werden soll. Wir können durch Ausprobieren folgende Zusammenhänge ermitteln:

Teilt man die $3$ Liter auf die großen Gläser mit $\frac{1}{3}$ Liter Inhalt auf, so kann man $9$ Gläser füllen, denn:

$9\cdot \frac{1}{3} =3$

Teilt man die $3$ Liter auf die kleinen Gläser mit $\frac{2}{10}$ Liter Inhalt auf, so kann man $15$ Gläser damit füllen, denn:

$15 \cdot \frac{2}{10} =3$

Wir wollen uns nun anschauen, wie wir rechnerisch auf dieses Ergebnis kommen können:

Regeln zum Dividieren einer natürlichen Zahl durch einen Bruch

Um eine natürliche Zahl durch einen Bruch zu dividieren, wenden wir die Kehrwertregel an:

  • Wir bilden den Kehrwert des Bruches.
  • Wir multiplizieren die natürliche Zahl mit dem Kehrwert des Divisors.

Um den Kehrwert eines Bruches zu bilden, vertauschen wir Zähler und Nenner. Der Kehrwert von $\frac{2}{10}$ ist also $\frac{10}{2}$.

Wir multiplizieren anschließend mit dem Kehrwert und erhalten so das Ergebnis:

$3 \cdot \frac{10}{2} = \frac{30}{2} =15$

Genauso kannst du übrigens vorgehen, wenn du eine ganze Zahl durch einen Bruch dividieren möchtest.

Natürliche Zahlen durch einen Bruch dividieren – Aufgaben

Wir üben das Dividieren einer natürlichen Zahl durch einen Bruch noch an einigen Aufgaben:

$12:\frac{3}{4}$

Wir bilden den Kehrwert des Divisors:

$\frac{3}{4} \longrightarrow \frac{4}{3}$

Wir multiplizieren nun die natürliche Zahl mit dem Kehrwert des Divisors:

$12 \cdot \frac{4}{3} = \frac{48}{3}=16$

Hier sind noch einige weitere Aufgaben in einer Tabelle zusammengefasst. Du siehst, dass das Ergebnis nicht immer eine natürliche Zahl sein muss.

Aufgabe Kehrwert des Divisors Multiplikation Ergebnis
$2:\frac{1}{5}$ $\frac{5}{1}=5$ $2 \cdot 5$ $10$
$4:\frac{7}{5}$ $\frac{5}{7}$ $4 \cdot \frac{5}{7}$ $\frac{20}{7}$
$3:\frac{2}{9}$ $\frac{9}{2}$ $3 \cdot \frac{9}{2}$ $\frac{27}{2}$

In diesem Video zum Thema natürliche Zahlen durch Brüche teilen …

… betrachten wir zuerst, wie man durch Ausprobieren am Beispiel das Ergebnis bestimmen kann. Anschließend wird die Regel, wie eine natürliche Zahl durch einen Bruch dividiert wird, einfach erklärt. Andersherum kannst du natürlich auch einen Bruch durch eine natürliche oder ganze Zahl dividieren. Du kannst dir außerdem anschauen, wie man Brüche durcheinander dividiert.

Willst du nun selber noch Aufgaben dazu lösen? Zusätzlich zum Video und dem Text findest du hier auf der Seite noch Übungen und Arbeitsblätter zum Thema natürliche Zahlen durch Brüche teilen.

Transkript Natürliche Zahlen durch Brüche teilen

Adinas Party ist in vollem Gange. Ihre Freunde haben sich schon mit Kuchen und Pizza vollgestopft. Aber Adina hat auch Getränke vorbereitet. Sie hat einen Liter Orangensaft, einen Liter Pfirsichsaft und einen Liter Kirschsaft gemixt und möchte nun diesen Saftcocktail für alle Gäste in gleich große Gläser füllen. Insgesamt sind das drei Liter. Dafür hat sie zwei verschiedene Gläsergrößen zur Verfügung: In die größeren Gläser passen „null Komma drei drei“ Liter, also fast genau ein Drittel Liter. Die kleineren Gläser fassen „null Komma zwei“ Liter, das sind „zwei Zehntel“. Um herauszufinden, wie viele Gläser sie befüllen kann, wenn sie sich für die kleinen oder die großen entscheidet, muss sie „Natürliche Zahlen durch Brüche teilen“. Lass uns probehalber einmal schauen, wie viele Gläser man mit drei Litern Wasser befüllen kann. Wenn wir drei Liter auf die großen Gläser aufteilen, können wir genau neun Gläser befüllen. Neun mal „ein Drittel“ ergibt „neun Drittel“ und das sind gekürzt „drei Ganze“. Neun Gläser mit je einem Drittel Liter ergeben also insgesamt drei Liter. Da haben wir die drei Liter Wasser also perfekt aufgeteilt. Probieren wir das Ganze jetzt mit den kleineren Gläsern. Wenn wir die drei Liter Wasser auf diese Gläser aufteilen, können wir insgesamt fünfzehn Gläser befüllen. Auch hier rechnen wir sicherheitshalber noch einmal nach. Fünfzehn mal „zwei Zehntel“ sind „dreißig Zehntel“. Diesen Bruch können wir mit zehn kürzen und kommen auf drei Ganze. Fünfzehn Gläser mit je zwei Zehntel Litern ergeben also insgesamt drei Liter. Adina kann also entweder die großen Gläser nehmen und neun davon befüllen oder von den kleineren Gläsern fünfzehn befüllen. Aber das wollen wir doch nicht jedes Mal mit Wasser ausprobieren. Das wäre ja eine schlimme Wasserverschwendung! Schauen wir uns die Rechnung noch einmal genauer an. Wenn wir drei Liter auf Ein-Drittel-Liter-Gläser aufteilen, erhalten wir neun. Und wenn wir drei Liter stattdessen auf Zwei-Zehntel-Liter-Gläser aufteilen, erhalten wir fünfzehn. Um rechnerisch auf das Ergebnis zu kommen, wenden wir die „Kehrwertregel“ an. Das heißt, wir bilden den Kehrwert des Divisors. Der Divisor ist die Zahl, durch die geteilt wird. In unserem Fall ist das also immer ein Bruch. Der Kehrwert von einem Drittel sind drei Ganze. Wir vertauschen also den Zähler und den Nenner. Das gleiche machen wir mit den „zwei Zehnteln“ und erhalten „zehn Halbe“. Wenn wir nun mit dem Kehrwert multiplizieren, erhalten wir das Ergebnis. Drei mal drei Ganze sind neun, und drei mal „zehn Halbe“ sind „dreißig halbe“. Gekürzt mit zwei kommen wir auf fünfzehn. So, wie wir es auch vorher schon ermittelt hatten. Mit dem Kehrwert können wir auch weitere Aufgaben problemlos lösen. Zum Beispiel zwei dividiert durch „ein Fünftel“. Um die Divisionsaufgabe zu lösen, bilden wir einfach den Kehrwert von „ein Fünftel“ und multiplizieren dann. So kommen wir auf zehn. Bei Zwölf geteilt durch „drei Viertel“ können wir genauso vorgehen. Wir vertauschen den Zähler und den Nenner des Divisors und kommen auf „achtundvierzig Drittel“. Diesen Bruch können wir noch mit drei kürzen und erhalten sechzehn. Natürlich ist das Ergebnis nicht immer eine ganze Zahl, so wie bei diesem Beispiel hier. Wenn wir mit dem Kehrwert multiplizieren erhalten wir zwanzig Siebtel, die wir nicht weiter kürzen können. Wenn du magst, kannst du das Video kurz pausieren und das nächste Beispiel selbst berechnen. Die Lösung gibt es in drei, zwei, eins. Drei geteilt durch „zwei Neuntel“ sind „siebenundzwanzig Halbe“. Diesen Bruch können wir zwar nicht mehr kürzen, aber wir können ihn in die gemischte Zahl „Dreizehn ein Halb“ umwandeln. Während Adina noch weitere Gläser aus der Küche holt, fassen wir zusammen. Wenn wir natürliche Zahlen durch Brüche dividieren wollen, müssen wir zuerst den Kehrwert des Divisors bilden. Anschließend können wir mit dem Kehrwert multiplizieren und erhalten die Lösung. Bei der Lösung sollte man immer noch einmal überprüfen, ob man den berechneten Bruch kürzen kann. Adina ist auf eine Lösung gekommen. Jeder bekommt ein kleines Glas vom Saftcocktail. Oh, die Rechnerei war wohl überflüssig. Ist ja schön, dass ihren Freunden der Saft geschmeckt hat.

4 Kommentare

4 Kommentare
  1. Vielen Dank für die mega Erklärung.danke danke

    Von Linus, vor 3 Monaten
  2. danke

    Von Till, vor 3 Monaten
  3. Ich finde es schön das sich die Leute da so viel Mühe geben und das so schön erklären. Danke ♡

    Von Valentina, vor 3 Monaten
  4. Es ist echt cool erklärt und ich habs richtig gut verstanden

    Von Bennet, vor 4 Monaten
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

2.575

sofaheld-Level

5.784

vorgefertigte
Vokabeln

10.212

Lernvideos

42.303

Übungen

37.382

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden