Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Prozent als Anteil eines Ganzen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 120 Bewertungen
Die Autor*innen
Avatar
Team Digital
Prozent als Anteil eines Ganzen
lernst du in der Unterstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse

Prozent als Anteil eines Ganzen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Prozent als Anteil eines Ganzen kannst du es wiederholen und üben.
  • Bestimme den Anteil.

    Tipps

    Ist der Prozentsatz kleiner als $100\%$, so ist der Anteil kleiner als das Ganze.

    Bei dem Dreisatz musst du rechts und links jeweils dieselbe Rechenoperation durchführen.

    Den Wert für $1\%$ erhältst du, indem du den Wert für $100\%$ durch $100$ dividierst.

    Lösung

    Mit einem Dreisatz kannst du zu einem gegebenen Ganzen den Anteil zu einem vorgegebenen Prozentsatz bestimmen. Zur Veranschaulichung dient ein Streifendiagramm. Die rechte Grenze markiert hier das Ganze und den zugehörigen Prozentsatz $100\%$. Der Anteil zu dem Prozentsatz $40\%$ liegt etwas links der Mitte des Streifens.

    Bei der Anwendung des Dreisatzes für eine proportionale Zuordnung führst du auf beiden Seiten jeweils dieselbe Rechnung durch. Um den Prozentwert oder Anteil auszurechnen, kannst du zuerst aus dem Wert für das Ganze den Wert für $1\%$ bestimmen. Dazu teilst du diesen Wert durch $100$ und erhältst $1,35$. Nun kannst du daraus den Wert zu dem Prozentsatz $40\%$ bestimmen, indem du mit $40$ multiplizierst. So erhältst du den Anteil $54$.

  • Berechne die Anteile und Prozente.

    Tipps

    Verwende einen Dreisatz, um zu einem gegebenen Ganzen und Prozentsatz den zugehörigen Anteil zu bestimmen.

    Der Prozentsatz ist das Verhältnis aus dem Anteil und dem Ganzen. Die Prozentzahl ist das Hundertfache dieses Verhältnisses.

    Entspricht $176$ einem Anteil von $55\%$, so ist das Ganze $176:0,55=320$.

    Lösung

    Um den Anteil eines gegebenen Ganzen zu einem vorgegebenen Prozentsatz $p\%$ zu berechnen, kannst du einen Dreisatz verwenden: Du rechnest zuerst auf $1\%$ „runter“ und dann wieder auf den gegebenen Prozentsatz „rauf“: Da $1\%$ ein Hundertstel von $100\%$ ist, dividierst du den Wert des Ganzen durch $100$, um den Wert des Anteils $1\%$ zu berechnen. Dann multiplizierst du mit der gegebenen Prozentzahl $p$ und erhältst den gesuchten Anteil zum Prozentsatz $p\%$.

    Um zu einem vorgegebenen Anteil und dessen Prozentsatz das Ganze zu bestimmen, dividierst du den Anteil durch den Prozentsatz: Der Anteil $176$ mit dem Prozentsatz $55\%$ gehört zu dem Ganzen $320$, denn $320 \cdot 0,55 = 176$ bzw. $176:0,55 = 320$.

    Schließlich kannst du auch zu einem gegebenen Anteil und dem Ganzen den zugehörigen Prozentsatz ausrechnen. Denn dieser entspricht genau dem Verhältnis aus dem Anteil und dem Ganzen als Dezimalbruch ausgedrückt. Um den Prozentsatz zu erhalten, musst du den Dezimalbruch noch mit $100$ multiplizieren und ein Prozentzeichen anfügen.

    So findest du folgende Zuordnungen:

    • $40\%$ von $135$ sind $54$.
    Denn $135 :100 = 1,35$ und $1,35 \cdot 40 = 54$.

    • $900$ sind $30\%$ von $3 000$.
    Denn $900 : 0,3 = 3 000$.

    • Der Anteil $1 950$ von $3 000$ entspricht $65\%$.
    Denn hier ist $\frac{1 950}{3 000} = 1 950 : 3 000 = 0,65$.

    • Der Anteil $2 100$ von $3 000$ beträgt $70\%$.
    Denn du kannst nachrechnen: $\frac{2 100}{3 000} = 0,7$. Umgekehrt ist auch $2 100 = 3 000 - 900$ und $900$ entspricht $30\%$ von $3 000$. Daher entspricht $2 100$ genau $100\% - 30\% = 70\%$ von $3 000$.

    • $1,35$ sind $1\%$ von $135$.
    Diesen Wert erhältst du als Zwischenrechnung beim obigen Dreisatz: $100\% : 100 = 1\%$. Darum ist $135:100 = 1,35$ der Anteil von $135$ zu dem Prozentsatz $1\%$.

  • Bestimme den Prozentsatz.

    Tipps

    Dividiere den Anteil durch das Ganze, um den Prozentsatz zu bestimmen.

    Der Prozentsatz $45\%$ entspricht etwas weniger als der Hälfte des Ganzen.

    $33$ sind $0,6\%$ von $5  500$, denn $33:5 500 = 0,006$ bzw. $33:0,006 = 5 500$.

    Lösung

    Um den Prozentsatz zu bestimmen, genügt es, den Anteil jeweils durch das Ganze zu dividieren. Das Ergebnis dieser Division ist der Prozentsatz als Dezimalbruch dargestellt. Du kannst die Prozentzahl daraus ablesen, indem du den Dezimalbruch mit $100$ multiplizierst.

    Statt alle Prozentsätze auszurechnen, kannst du manche auch direkt erkennen: Der Prozentsatz $45\%$ ist nur wenig kleiner als $50\%$, was $\frac{1}{2}$ entspricht. Diesem Prozentsatz entsprechen also Anteile, die nur wenig kleiner als die Hälfte des Ganzen sind, z. B. $16,2$ von $36$. Der Prozentsatz $0,4\%$ dagegen ist kleiner als $1\%$. Der Anteil muss hier also kleiner als ein Hundertstel des Ganzen sein. Dies ist z. B. bei $1,16$ von $290$ der Fall.

    Du erhältst dann folgende Zuordnungen:

    $30\%$:

    • $9$ von $30$, denn $9:30 = 0,3 = 30\%$.
    • $24,3$ von $81$: Hier ist $27:81 = 0,3$.
    • $81$ von $270$, denn $81:270 = 0,3$.
    $45\%$:
    • $9$ von $20$: Zur Probe rechnest du $20 \cdot 0,45 = 9$.
    • $36,45$ von $81$, denn $36,45 : 0,45 = 81$.
    • $16,2$ von $36$, denn $\frac{16,2}{36} = \frac{162}{360} = \frac{81}{180} = \frac{9}{20} = 0,45$.
    $81\%$
    • $243$ von $300$: Hier ist $243:300 = 0,81$.
    • $36,45$ von $45$, denn $0,81 \cdot 45 = 36,45$.
    • $4,86$ von $6$, denn $4,86:6 = 0,81$.
    $0,4\%$:
    • $4$ von $1 000$: Hier ist $\frac{4}{1 000} = \frac{0,4}{100} = 0,4\%$.
    • $4,86$ von $1 215$, denn $4,86:0,4=1 215$.
    • $1,16$ von $290$, denn es ist $1,16:0,4 = 290$.

  • Bestimme die gesuchten Größen.

    Tipps

    Der Prozentwert entspricht dem Anteil eines Ganzen.

    Die Prozentzahl ist das Hundertfache des Prozentsatzes.

    Sind $12\%$ eines Kapitals $144$, so beträgt des ganze Kapital $144:0,12 = 1 200$.

    Lösung

    Bei der Darstellung eines Anteils von einem Ganzen durch eine Prozentangabe unterscheidet man den Prozentsatz und die Prozentzahl. Der Prozentsatz ist das Verhältnis des Anteils zum Ganzen. Man kann ihn z. B. als Dezimalbruch darstellen. Praktisch ist die Darstellung in der Form $p\%$. Die Zahl $p$ heißt Prozentzahl, sie ist das Hundertfache des Prozentsatzes. Denn $p\%$ steht für $\frac{p}{100}$ bzw. $p \cdot \frac{1}{100}$.

    Die Angabe des Prozentsatzes als Verhältnis des Anteils zum Ganzen kannst du nach dem Ganzen auflösen, um Leelees Kapital zu berechnen: Leelee weiß, wie groß der Anteil ihres Kapitals zu einem vorgegebenen Prozentsatz sein soll: $63\%$ des Kapitals entsprechen $1 575$ €. Diese Zahl ist der Prozentwert zu dem gegebenen Prozentsatz $63\%$ und dem unbekannten Kapital. Um dieses zu berechnen, dividiert Leelee den Prozentwert durch den Prozentsatz. Sie erhält für das Ganze des benötigten Kapitals:

    $1 575 : 0,63 = 2 500$

    Wenn Leelees Geschäfte gut laufen, beträgt der Gewinn $6\%$ des eingesetzten Kapitals. Um den Prozentsatz oder Zinssatz als Dezimalbruch zu schreiben, dividiert Leelee die Prozentzahl durch $100$. Sie erhält dann den Gewinn, indem sie den Prozentsatz mit dem Kapital multipliziert:

    $0,06 \cdot 2 500 = 150$

  • Definiere die Begriffe.

    Tipps

    Der Prozentsatz $p\%$ entspricht dem Anteil $p$ von dem Ganzen $100$.

    $10\%$ entsprechen $0,1=\frac{10}{100}$.

    Mit der folgenden Beziehung kannst du den Anteil aus dem Ganzen und dem Prozentsatz berechnen:

    $\text{Prozentsatz} = \dfrac{\text{Anteil}}{\text{Ganzes}} $

    Lösung

    Der Prozentsatz ist eine Angabe für das Verhältnis des Anteils zum Ganzen. Man drückt dieses Verhältnis in $\%$ aus, indem man den entsprechenden Anteil zum Ganzen $100$ ausrechnet. Die Angabe $p\%$ entspricht daher dem Verhältnis $\frac{p}{100}$.

    Folgende Aussagen sind falsch:

    • Die Prozentzahl ist der Quotient aus Anteil und Ganzem.
    Tatsächlich ist der Prozentsatz das Verhältnis des Anteils zum Ganzen. Die Prozentzahl ist das Hundertfache dieses Prozentsatzes.

    • Das Ganze entspricht immer dem Prozentsatz $p\%$.
    Das gilt nur für $p=100$, denn das Ganze entspricht immer dem Prozentsatz $100\%$. Mit der Variablen $p$ bezeichnet man eine beliebige vorgegebene oder auszurechnende Prozentzahl.

    Folgende Aussagen sind richtig:

    • Der Anteil ist das Produkt aus dem Prozentsatz und dem Ganzen.
    Denn der Prozentsatz ist das Verhältnis vom Anteil zum Ganzen. Löst du die Gleichung nach dem Anteil auf, so erhältst du den Anteil als Produkt von Prozentsatz und Ganzem.

    • Der Prozentsatz ist das Verhältnis des Anteils zum Ganzen.
    Dies ist die Definition des Prozentsatzes. Du kannst das Verhältnis als Dezimalbruch aufschreiben. Eine Darstellung in der Form $p\%$ findest du, indem du den Dezimalbruch mit $100$ multiplizierst und ein Prozentzeichen anfügst. Die resultierende Zahl ist die Prozentzahl $p$.

    • Die Prozentzahl $p$ ist der Anteil von $100$ zu dem Prozentsatz $p\%$.
    Der Prozentsatz $p\%$ steht für den Bruch $\frac{p}{100}$. Dieser ist ein Maß für den Anteil $p$ von dem Ganzen $100$.

    • $35\%$ entsprechen $\frac{35}{100}$.
    Denn $p\%$ bedeutet nichts anderes als $p$ Hundertstel, also $\frac{p}{100}$ oder $p \cdot \frac{1}{100}$.

  • Analysiere die Rechnung.

    Tipps

    Ist der Prozentsatz kleiner als $100\%$, so ist der zugehörige Anteil kleiner als das Ganze.

    Lösung

    Leelee hat links die benötigte Summe $3 465$ € und darüber den zugehörigen Prozentsatz $77\%$ notiert. Daneben hat sie die Daten in ein Diagramm eingezeichnet und dann das Spendenziel, also das Ganze, ausgerechnet. Bei der Beschriftung des Diagramms hat Leelee die Positionen der Begriffe „Anteil“ und „Ganzes“ verwechselt: $100\%$ steht immer für das Ganze, die Begriffe „$100\%$“ und „Ganzes“ stehen daher an den einander entsprechenden Stellen des Streifendiagramms. Die Formel, die Leelee zur Berechnung des Ganzen verwenden will, ist falsch. Die korrekte Formel lautet:

    Anteil $=$ Prozentsatz $\cdot$ Ganzes

    In der Rechnung hat Leelee auf der linken Seite der ersten Zeile den Bruch $\frac{77}{100}$ eingetragen. Korrekt wäre der Bruch $\frac{77}{100}$ auf der rechten Seite der Gleichung oder der Bruch $\frac{100}{77}$ auf der linken Seite. Auch in der zweiten Zeile der Rechnung ist der Bruch $\frac{77}{100}$ auf der linken Seite falsch. Die Terme auf der rechten Seite sind alle korrekt.

    Außerdem kann das Ergebnis $x=2 668,05$ nicht stimmen, denn die am Anfang angesetzten $3 465$ € können nicht $77\%$ von $2 668,05$ € sein. Ein Anteil von $77\%$ ist in jedem Fall kleiner als das unbekannte Ganze $x$.

    Die korrekte Rechnung sieht so aus:

    $\begin{aligned} 3 465 &= \frac{77}{100} \cdot x \\ \frac{100}{77} \cdot 3 465 &= \frac{100}{77} \cdot \frac{77}{100} \cdot x \\ 4 500 &= x \end{aligned} $

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.374

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.469

Lernvideos

35.645

Übungen

33.181

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden