Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Achsenspiegelung – Einführung

Die Achsenspiegelung bildet eine geometrische Figur auf der anderen Seite der Spiegelachse in gleichen Proportionen ab. Schritt für Schritt wird erklärt, wie man eine Achsenspiegelung mithilfe eines Zirkels durchführt. Du möchtest mehr über Achsenspiegelungen lernen? Interessiert? Dies und vieles mehr findest du im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.1 / 227 Bewertungen
Die Autor*innen
Avatar
Team Digital
Achsenspiegelung – Einführung
lernst du in der Unterstufe 1. Klasse - 2. Klasse

Achsenspiegelung – Einführung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Achsenspiegelung – Einführung kannst du es wiederholen und üben.
  • Gib die Eigenschaften der Achselspiegelung an.

    Tipps

    Bei der Konstruktion von Spiegelbildern wird jeder Eckpunkt einzeln gespiegelt. Die Bildpunkte werden dann entsprechend der Ursprungsfigur miteinander verbunden.

    Liegt ein Punkt auf der Spiegelachse, sind Ursprungspunkt und Bildpunkt identisch.

    Lösung

    Diese Aussagen sind falsch:

    • Bei der Konstruktion einer Punktspiegelung spiegelt man die komplette Figur auf einmal.
    Denn bei der Konstruktion von Spiegelbildern wird jeder Eckpunkt einzeln gespiegelt. Die Bildpunkte werden dann entsprechend der Ursprungsfigur miteinander verbunden.
    • Mindestens ein Punkt der Ursprungsfigur muss auf der Spiegelachse liegen.
    Punkte der Ursprungsfigur können, müssen aber nicht auf der Spiegelachse liegen. Liegen Punkte jedoch auf der Spiegelachse, sind Ursprungspunkt und Bildpunkt identisch.

    Diese Aussagen sind wahr:

    • Ein durch Spiegelung gefundener Punkt heißt Bildpunkt.
    • Einen Bildpunkt bezeichnet man üblicherweise mit dem gleichen Buchstaben, mit dem man den Ursprungspunkt bezeichnet. Man fügt allerdings einen Strich an. Aus $A$ wird demnach $A'$.
    • Der Bildpunkt muss den gleichen Abstand von der Spiegelachse haben wie der Ursprungspunkt.
    Alle diese Aussagen beschreiben übliche Eigenschaften von Achsenspiegelungen.

  • Gib wieder, wie man Figuren an einer Achse spiegelt.

    Tipps

    Um eine Figur zu spiegeln, müssen zunächst alle Eckpunkte der Figur einzeln gespiegelt werden.

    Der Bildpunkt muss genau im gleichen Abstand auf der gegenüberliegenden Seite der Spiegelachse liegen.

    Nachdem du alle Eckpunkte gespiegelt hast, kannst du diese Punkte zur Bildfigur verbinden.

    Lösung

    Eine Spiegelung an einer Achse funktioniert folgendermaßen:

    • Bei der Bestimmung der Bildfigur gehst du punktweise vor. Zu Beginn wählst du also einen Eckpunkt $A$ der Figur aus.
    Um eine Figur zu spiegeln, müssen zunächst alle Eckpunkte der Figur einzeln gespiegelt werden.
    • Dann fällst du das Lot durch $A$ auf die Spiegelachse.
    • Im Anschluss zeichnest du einen Kreis um den Fußpunkt, der das Lot in $A$ und in einem weiteren Punkt schneidet. Der Radius dieses Kreises entspricht dem Abstand von $A$ zum Fußpunkt.
    • Der zweite Schnittpunkt von dem Kreis und der Lotgeraden ist der Bildpunkt $A'$.
    Der Bildpunkt muss genau im gleichen Abstand auf der gegenüberliegenden Seite der Spiegelachse liegen. Dabei müssen sich Bildpunkt und Ursprungspunkt auf einer Geraden senkrecht zur Spiegelachse befinden. Das Lot, das durch den Ursprungspunkt geht, stellt sicher, dass Bildpunkt und Ursprungspunkt auf einer solchen Geraden liegen. Die Kreissegmente sorgen dafür, dass der Bildpunkt den gleichen Abstand zur Spiegelachse hat.
    • Für alle weiteren Punkte gehst du analog vor.
    • Zum Schluss verbindest du die Bildpunkte entsprechend der Ursprungsfigur zur Bildfigur.
  • Bilde mittels Spiegelung die Bildfigur des gegebenen Dreiecks.

    Tipps

    Um auf die Spiegelachse ein Lot durch den Ursprungspunkt zu fällen, benötigt man zunächst zwei Punkte auf der Spiegelachse, die den gleichen Abstand zum Ursprungspunkt haben.

    Der Bildpunkt muss genau im gleichen Abstand auf der gegenüberliegenden Seite der Spiegelachse liegen.

    Lösung

    Bei der Spiegelung des gegebenen Dreiecks an der Spiegelachse gehst du wie folgt vor:

    • Du beginnst mit einem Eckpunkt der Figur und zeichnest um den Punkt einen Kreisbogen, der die Spiegelachse zweimal schneidet. Wir beginnen hier mit dem Eckpunkt $A$.
    Der Kreisbogen schneidet die Spiegelachse in zwei Punkten, welche man für die Konstruktion des Lots benötigt.
    • Um die beiden Schnittpunkte des Kreisbogens mit der Spiegelachse zeichnest du jeweils einen Kreisbogen mit gleichem Radius. Dieser muss groß genug sein, so dass sich die Kreisbogen zweimal schneiden.
    • Durch die Schnittpunkte zeichnest du eine Gerade, die durch den Punkt $A$ verläuft. Damit hast du das Lot auf die Spiegelachse durch den Punkt $A$ gefällt.
    So konstruierst du also eine Lotgerade. Diese sorgt dafür, dass der Bildpunkt und der Ursprungspunkt auf einer Geraden senkrecht zur Spiegelachse liegen, was eine Bedingung der Achsenspiegelung ist.
    • Mit zwei Kreissegmenten um den Fußpunkt trägst du den Abstand zwischen Fußpunkt und $A$ ab. Der Schnittpunkt der Lotgeraden mit dem zweiten Kreissegment ist der Bildpunkt $A'$.
    Diese Kreissegmente sorgen dafür, dass der Bildpunkt den gleichen Abstand zur Spiegelachse hat wie der Ursprungspunkt, womit die zweite Bedingung der Achsenspiegelung erfüllt ist.
    • Die restlichen Punkte der Figur werden genauso gespiegelt und im Anschluss zur Bildfigur verbunden.
  • Erkläre, wie man die Konstruktionsschritte durchführt.

    Tipps

    Ob eine Figur achsensymmetrisch ist, kannnst du bestimmen, indem du die Figur auf Symmetrieachsen hin untersuchst.

    Lösung

    Ob eine Figur achsensymmetrisch ist, kannst du bestimmen, indem du die Figur auf Symmetrieachsen hin untersuchst: Eine Symmetrieachse ist eine Spiegelachse, die die Figur in zwei Teile teilt, sodass ein Teil das Spiegelbild des anderen ist. Figuren können mehrere dieser Symmetrieachsen besitzen.

    Folgende Figuren besitzen keine Achsensymmetrie:

    • Figur $3$
    • Figur $4$
    Folgende Figuren sind achsensymmetrisch:

    • Figur $1$
    • Figur $2$
    • Figur $5$
  • Benenne die Bestandteile Figur und ihrer Spiegelung.

    Tipps

    Bildpunkte werden mit einem Strich gekennzeichnet. Aus $A$ wird demnach $A'$.

    Verbindest du alle Bildpunkte miteinander, erhältst du die Bildfigur.

    Lösung

    Die Zuordnung kann folgendermaßen erfolgen:

    • Einzelne Punkte der ursprünglichen Figur heißen Ursprungspunkt. Also ist auch $A$ ein Ursprungspunkt.
    • Die Figur, die sich aus den Ursprungspunkten zusammensetzt, heißt Ursprungsfigur. Hier ist das rosa Rechteck also die Ursprungsfigur.
    • Die Spiegelungen der Ursprungspunkte heißen Bildpunkte. Also ist $A'$ ebenfalls ein Bildpunkt.
    • Die Spiegelung der Ursprungsfigur heißt Bildfigur. Demnach ist das hellblaue Rechteck die Bildfigur.
    • Die Gerade, an der gespiegelt wird, heißt Spiegelachse.
    • Der Ursprungspunkt $D$ liegt genau auf der Spiegelachse. Er hat also den Abstand $0$ von dieser Achse. Deshalb ist er gleichzeitig sein Spiegelpunkt: der Bildpunkt $D'$.
  • Erkläre, wie die Konstruktion funktioniert.

    Tipps

    Ein Lot steht immer senkrecht auf der Geraden, zu der es konstruiert wurde.

    Möchte man Punkte finden, die den gleichen Abstand zu einem bestimmten Punkt haben, verwendet man oft einen Kreis.

    Der Bildpunkt kann mit dem bekannten Konstruktionsverfahren gefunden werden.

    Lösung

    Das Vorgehen bei einer Achsenspiegelung erklärt sich folgendermaßen:

    Bei einer Achsenspiegelung müssen Bildpunkt und Ursprungspunkt auf einer Geraden senkrecht zur Spiegelachsen liegen. Eine Lotgerade steht senkrecht auf der Spiegelachse. Deshalb muss man eine Lotgerade konstruieren, um einen Punkt an einer Achse zu spiegeln.

    Bildpunkt und Ursprungspunkt müssen außerdem den gleichen Abstand zur Spiegelachse haben. Alle Punkte auf einem Kreis haben den gleichen Abstand vom Kreismittelpunkt. Darum zeichnet man einen Kreis um den Fußpunkt, um den Abstand abzutragen.

    Will man also den Punkt $A(2\vert3)$ an der $y$-Achse spiegeln, muss man sicherstellen, dass der Bildpunkt $A'$ und $A$ auf einer Geraden senkrecht zur $y$-Achse liegen. Außerdem müssen die beiden Punkte den gleichen Abstand zu dieser Achse haben. Zeichnet man den Punkt in ein Koordinatensystem und führt die gelernte Konstruktion durch, erhält man den Bildpunkt $A'(-2\vert3)$.

    Derselbe Punkt $A(2\vert3)$ kann auch an der $x$-Achse gespiegelt werden. Hier müssen Ursprungspunkt $A$ und Bildpunkt $A''$ auf einer Geraden senkrecht zur $y$-Achse liegen. Der Punkt, der den gleichen Abstand zu dieser Achse hat wie $A$, liegt bei $A''(2\vert-3)$.

    In der Mathematik spiegelt man häufig Punkte oder Funktionen an Koordinatenachsen. Dabei gibt es einen einfachen Trick, wie du Punkte an diesen spiegelst: Willst du zum Beispiel den Punkt $A(2\vert3)$ an der $x$-Achse spiegeln, weißt du schon, welchen Abstand zur Spiegelachse dieser Punkt hat. Um den Punkt im Koordinatensystem einzuzeichnen, bist du zwei Schritte nach rechts entlang der $x$-Achse gegangen und im Anschluss drei Schritte senkrecht nach oben entlang der $y$-Achse. Der Abstand zur Koordinaten- und Spiegelachse beträgt also $3$ Längeneinheiten. Willst du den Punkt spiegeln, musst du folglich nur von der Koordinatenachse aus $3$ Längeneinheiten in die andere, also negative Richtung gehen. Der Bildpunkt liegt demnach bei $A''(2\vert-3)$.