Angebot nur für kurze Zeit gültig!

Verpasse nicht die Möglichkeit sofatutor heute kostenlos zu testen!

Nur für kurze Zeit gültig!

sofatutor kostenlos testen!

14.081+

14.081+ Bewertungen

Kettenregel – Übung

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Sei der Erste und gib eine Bewertung ab!

Die Autor*innen
Avatar
Team Digital
Kettenregel – Übung
lernst du in der Oberstufe 7. Klasse - 8. Klasse

Grundlagen zum Thema Kettenregel – Übung

Nach dem Schauen dieses Videos wirst du in der Lage sein, die Kettenregel anzuwenden, um verkettete Funktionen abzuleiten.

Zunächst lernst du, wie sich verkettete Funktionen zusammensetzen. Anschließend lernst du die Kettenregel kennen, Abschließend lernst du den Merkspruch “äußere Ableitung mal innere Ableitung”.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Verkettung, innere Funktion, äußere Funktion, Ableitung und Kettenregel.

Bevor du dieses Video schaust, solltest du bereits wissen, was eine verkettete Funktion ist.

Transkript Kettenregel – Übung

Jetzt wird's ernst! Die Fünfhunderttausend Euro Frage. Wie lautet die Ableitung der Funktion „f von x“ gleich „e hoch x Quadrat minus eins“? a: e hoch zwei x. b: e hoch x Quadrat minus eins. c: zwei x mal e hoch x Quadrat minus eins. oder d: zwei x mal e hoch zwei x. Sehnst du dich jetzt auch nach einem Telefonjoker? Damit wir uns nicht verzocken, scheint ein bisschen „Übung in der Anwendung der Kettenregel“ angebracht zu sein. Kettenregel – die kommt immer dann zum Einsatz, wenn wir eine verkettete Funktion ableiten wollen. Im Klartext heißt das: Wenn wir eine Funktion ableiten wollen, die wir in eine innere und eine äußere Funktion unterteilen können. Zu erkennen, dass es sich bei der Funktion, die wir ableiten wollen, um eine verkettete Funktion handelt, ist eigentlich schon die halbe Miete. Denn wenn uns einmal klar ist, was die innere und was die äußere Funktion ist, müssen wir diese nur noch einzeln ableiten, und dann eben die Kettenregel anwenden. Diese besagt: Die Ableitung einer verketteten Funktion ist gleich „äußere Ableitung mal innere Ableitung“. Schauen wir uns das nochmal an unserer Quizfrage an: Die innere Funktion ist hier „x Quadrat minus eins“. Als Faustregel können wir uns merken: Der Term, der die Variable x enthält, ist im Normalfall unsere innere Funktion. Der Term, in den diese innere Funktion eingesetzt wird, ist unsere äußere Funktion. In diesem Fall „e hoch x“. Wir bilden die äußere Ableitung, das ist einfach e hoch x. Die innere Ableitung erhalten wir, indem wir klassisch nach Potenz- und Summenregel ableiten: übrig bleibt zwei x. Jetzt brauchen wir nur noch die äußere Ableitung – in die die innere Funktion eingesetzt ist – mit der inneren Ableitung zu multiplizieren. Die beiden Faktoren können wir anschließend noch umstellen. Wir sehen: Antwortmöglichkeit c ist richtig! Antwortmöglichkeit d ist falsch, weil hier innerhalb der äußeren Ableitung auch die innere Ableitung gebildet wurde. Bei Antwort b fehlt die innere Ableitung. Zwei typische Fehler, auf die wir beim Ableiten mit der Kettenregel achten sollten. Um verkettete Funktionen richtig abzuleiten, sollten wir das Ganze ein bisschen trainieren! Hier also die nächste Frage: Auf welche dieser Funktionsgleichungen lässt sich die Kettenregel anwenden? Pausiere das Video kurz und überlege selbst! Dann gehen wir es gemeinsam durch. Wir benötigen die Kettenregel für die Funktionen f, h und i. Bei „h von x“ ist es auf den ersten Blick nicht einfach zu erkennen. Aber wenn wir den Bruch als Potenz mit negativem Exponenten schreiben, erkennen wir bei allen drei Funktionen jeweils eine innere, und eine äußere Funktion. Die Funktion „g von x“ können wir ganz klassisch mit Potenz- und Summenregel ableiten. Kannst du auch die verketteten Funktionen ableiten? Versuch es doch mal selber, bevor wir uns die Lösungen gemeinsam anschauen. Bei der ersten Funktion ist „minus zwei x Quadrat plus vier“ unsere innere und Sinus von x unsere äußere Funktion. Wir leiten beide ab – hierzu müssen wir wissen, dass wir Cosinus erhalten, wenn wir den Sinus ableiten. Dann multiplizieren wir die äußere Ableitung – Achtung, der innere Funktionsterm wird hier wieder unverändert eingesetzt – mit der inneren Ableitung. Das Ergebnis können wir noch etwas schöner darstellen – fertig! Bei „h von x“ hatten wir den ersten Schritt durch die Umwandlung in eine Potenz mit negativem Exponenten schon erledigt. Wir können dann festhalten: „Drei x minus zwei“ ist unsere innere, und „x hoch minus eins“ unsere äußere Funktion. Wir leiten beide Funktionen einzeln mit der Potenzregel ab, und müssen anschließend nur noch das Produkt bilden. Das Ergebnis können wir noch vereinfachen, und anschließend wieder als Bruch schreiben. Den kleinen Kniff, die Funktionsgleichung in eine Potenz umzuschreiben, wenden wir auch bei der letzten Aufgabe an. Die Wurzel können wir auch als „in Klammern hoch ein Halb“ schreiben, dann wie gewohnt innere und äußere Funktion ausfindig machen, beide ableiten, und multiplizieren. Auch hier können wir vereinfachen und wieder in die Wurzelschreibweise wechseln. Und? Bist du bereit für die „eine-Millionen-Euro-Frage“? Wie lautet die Ableitung der folgenden Funktion? a, b, c, oder d? Die Antwort erfährst du nach einer kleinen Werbeunterbrechung, die wir für eine Zusammenfassung nutzen. Wenn du die Anwendung der Kettenregel üben möchtest, solltest du vor allem trainieren, verkettete Funktionen als solche zu erkennen. Denn wenn du einmal weißt, wie du eine gegebene Funktion in äußere und innere Funktion unterteilen kannst, musst du diese Funktionen nur noch einzeln ableiten. Dafür ist es je nach Funktionstyp manchmal hilfreich, den Funktionsterm in die Potenzschreibweise umzuwandeln. Die gesamte Ableitungsfunktion ergibt sich dann durch die Multiplikation der äußeren Ableitung samt unveränderter innerer Funktion mit der inneren Ableitung. Kurz und knapp: „Äußere Ableitung mal innere Ableitung.“ Wenn wir darin ein bisschen Routine aufgebaut haben, ist es auch gar nicht mehr schwer. Man muss nur den Überblick behalten! Das gilt auch für unsere große Preisfrage. Zugegeben: Die ist schon etwas kniffliger. Die richtige Antwort ist d! Und? Wärst du hier Millionär geworden?

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

2.679

sofaheld-Level

6.290

vorgefertigte
Vokabeln

10.220

Lernvideos

42.158

Übungen

37.248

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden