Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Brüche gleichnamig machen

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 436 Bewertungen
Die Autor*innen
Avatar
Team Digital
Brüche gleichnamig machen
lernst du in der Unterstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse

Brüche gleichnamig machen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Brüche gleichnamig machen kannst du es wiederholen und üben.
  • Beschreibe, wie man Brüche gleichnamig macht.

    Tipps

    Der Zähler steht im Bruch über dem Bruchstrich und der Nenner unter dem Bruchstrich.

    Bei dem Beispiel $\frac{2}{7}$ ist:

    • $2$ der Zähler und
    • $7$ ist der Nenner.

    Beim Erweitern werden Zähler und Nenner mit der gleichen Zahl multipliziert.

    Beim Kürzen werden Zähler und Nenner durch die gleiche Zahl dividiert.

    Lösung

    Um Brüche gleichnamig zu machen, muss man erst ein gemeinsames Vielfaches der Nenner finden:

    Beispiel: $\frac{1}{18}$ und $\frac{1}{24}$
    Das kleinste gemeinsame Vielfache von $18$ und $24$ ist $72$.

    Anschließend muss man die Brüche durch Erweitern auf diesen Hauptnenner bringen.

    Wir erweitern entsprechend den ersten Bruch mit $4$ und den zweiten Bruch mit $3$:

    $\frac{1}{18} = \frac{1 ~\cdot~ 4}{18 ~\cdot~ 4} = \frac{4}{72}$

    $\frac{1}{24} = \frac{1 ~\cdot~ 3}{24 ~\cdot~ 3} = \frac{3}{72}$

  • Gib das kleinste gemeinsame Vielfache der Nenner an.

    Tipps

    Das kleinste gemeinsame Vielfache zweier Zahlen ist die kleinste Zahl, die durch beide Zahlen teilbar ist.

    Beispiel: $~\frac{1}{6}$ und $\frac{3}{8}$

    Die Nenner sind $6$ und $8$. Die Vielfachenmengen sind:

    • $V_6=\lbrace 6; 12; 18; {\color{#669900}{24}}; 30; ... \rbrace$
    • $V_8=\lbrace 8; 16; {\color{#669900}{24}}; 32; ... \rbrace$
    Das kleinste gemeinsame Vielfache der Nenner ist $24$.

    Lösung

    Beispiel 1: $~\frac{1}{4}$ und $\frac{3}{8}$

    Die Nenner sind $4$ und $8$. Die Vielfachenmengen sind:

    • $V_4=\lbrace 4; {\color{#669900}{8}}; 12; 16; ... \rbrace$
    • $V_8=\lbrace {\color{#669900}{8}}; 16; 24;... \rbrace$
    Das kleinste gemeinsame Vielfache der Nenner ist $8$.

    Beispiel 2: $\frac{1}{3}$ und $\frac{4}{5}$

    Die Nenner sind $3$ und $5$. Die Vielfachenmengen sind:

    • $V_3=\lbrace 3; 6; 9; 12; {\color{#669900}{15}}; 18; ... \rbrace$
    • $V_5=\lbrace 5; 10; {\color{#669900}{15}}; 20; ... \rbrace$
    Das kleinste gemeinsame Vielfache der Nenner ist $15$.

    Beispiel 3: $\frac{5}{6}$ und $\frac{9}{14}$

    Die Nenner sind $6$ und $14$. Die Vielfachenmengen sind:

    • $V_6=\lbrace 6; 12; 18; 24; 30; 36; {\color{#669900}{42}}; ... \rbrace$
    • $V_{14}=\lbrace 14; 28; {\color{#669900}{42}}; ... \rbrace$
    Das kleinste gemeinsame Vielfache der Nenner ist $42$.

  • Bestimme wertgleiche Brüche so, dass die beiden Brüche gleichnamig sind.

    Tipps

    Beispiel: $\frac{1}{3}$ und $\frac{5}{6}$

    $\frac{1}{3} = \frac{1 \cdot 2}{3 \cdot 2} = \frac{2}{6}$

    Die beiden Brüche können also gleichnamig geschrieben werden: $\frac{2}{6}$ und $\frac{5}{6}$

    Wenn man die beiden Nenner multipliziert, können manchmal sehr große Zahlen herauskommen. In dem Fall können wir häufig durch das kleinste gemeinsame Vielfache einen kleineren Hauptnenner finden.

    Lösung

    Beispiel 1: $~\frac{3}{4}$ und $\frac{1}{2}$

    Wenn der Nenner eines Bruchs ein Vielfaches des Nenners des anderen Bruchs ist, so muss man nur einen Bruch erweitern. Hier muss also nur $\frac 12$ erweitert werden:

    $\frac{1}{2} = \frac{1 \cdot 2}{2 \cdot 2} = \frac{2}{4}$

    Die beiden Brüche können also wie folgt gleichnamig geschrieben werden: $\frac{3}{4}$ und $\frac{2}{4}$

    Beispiel 2: $~\frac{3}{5}$ und $\frac{1}{2}$

    Wenn die beiden Nenner nicht sehr groß sind, kann man sie miteinander multiplizieren, um den Hauptnenner zu finden. Wir multiplizieren die beiden Nenner: $5 \cdot 2 = 10$ und erweitern entsprechend den ersten Bruch mit $2$ und den zweiten Bruch mit $5$:

    $\frac{3}{5} = \frac{3 \cdot 2}{5 \cdot 2} = \frac{6}{10}$
    $\frac{1}{2} = \frac{1 \cdot 5}{2 \cdot 5} = \frac{5}{10}$

    Die beiden Brüche können also wie folgt gleichnamig geschrieben werden: $\frac{6}{10}$ und $\frac{5}{10}$

    Beispiel 3: $~\frac{1}{18}$ und $\frac{1}{24}$

    Um einen gemeinsamen Hauptnenner zu finden, kann man immer das kleinste gemeinsame Vielfache bestimmen. Das kgV von $18$ und $24$ ist $72$. Wir erweitern entsprechend den ersten Bruch mit $4$ und den zweiten Bruch mit $3$:

    $\frac{1}{18} = \frac{1 \cdot 4}{18 \cdot 4} = \frac{4}{72}$
    $\frac{1}{24} = \frac{1 \cdot 3}{24 \cdot 3} = \frac{3}{72}$

    Die beiden Brüche können also wie folgt gleichnamig geschrieben werden: $\frac{4}{72}$ und $\frac{3}{72}$

    Beispiel 4: $~\frac{3}{4}$ und $\frac{1}{24}$

    Auch hier ist der Nenner eines Bruchs ein Vielfaches des anderen Bruchs, wir müssen also nur einen Bruch erweitern.

    $\frac{3}{4} = \frac{3 \cdot 6}{4 \cdot 6} = \frac{18}{24}$

    Die beiden Brüche können also wie folgt gleichnamig geschrieben werden: $\frac{18}{24}$ und $\frac{1}{24}$

    Beispiel 5: $~\frac{1}{18}$ und $\frac{1}{2}$

    Wir müssen wieder nur einen Bruch erweitern:

    $\frac{1}{2} = \frac{1 \cdot 9}{2 \cdot 9} = \frac{19}{18}$

    Die beiden Brüche können also wie folgt gleichnamig geschrieben werden: $\frac{1}{18}$ und $\frac{9}{18}$

  • Bestimme wertgleiche Brüche so, dass die beiden Brüche gleichnamig sind.

    Tipps

    Bestimme das kleinste gemeinsame Vielfache der Nenner.

    Erweitere einen oder beide Brüche so, dass in ihrem Nenner jeweils das kleinste gemeinsame Vielfache steht.

    Lösung

    Beispiel 1: $~\frac{1}{4}$ und $\frac{3}{5}$

    Das kleinste gemeinsame Vielfache der Zahlen $4$ und $5$ ist $20$. Wir erweitern also den ersten Bruch mit $5$ und den zweiten Bruch mit $4$:

    $\frac{1}{4} = \frac{1 \cdot 5}{4 \cdot 5} = \frac{5}{20}$
    $\frac{3}{5}= \frac{3 \cdot 4}{5 \cdot 4} = \frac{12}{20}$

    Beispiel 2: $~\frac{3}{2}$ und $\frac{1}{5}$

    Das kgV der Zahlen $2$ und $5$ ist $10$, sodass wir den ersten Bruch mit $5$ und den zweiten Bruch mit $2$ erweitern müssen:

    $\frac{3}{2} = \frac{3 \cdot 5}{2 \cdot 5} = \frac{15}{10}$
    $\frac{1}{5}= \frac{1 \cdot 2}{5 \cdot 2} = \frac{2}{10}$

    Beispiel 3: $~\frac{5}{6}$ und $\frac{1}{4}$

    Der gemeinsame Hauptnenner von $6$ und $4$ ist $12$, wir erweitern also den ersten Bruch mit $2$ und den zweiten Bruch mit $3$:

    $\frac{5}{6} = \frac{5 \cdot 2}{6 \cdot 2} = \frac{10}{12}$
    $\frac{1}{4}= \frac{1 \cdot 3}{4 \cdot 3} = \frac{3}{12}$

    Beispiel 4: $~\frac{3}{8}$ und $\frac{2}{5}$

    Der gemeinsame Hauptnenner ist $40$, wir erweitern also den ersten Bruch mit $5$ und den zweiten Bruch mit $8$:

    $\frac{3}{8} = \frac{3 \cdot 5}{8 \cdot 5} = \frac{15}{40}$
    $\frac{2}{5}= \frac{2 \cdot 8}{5 \cdot 8} = \frac{16}{40}$

    Beispiel 5: $~\frac{2}{8}$ und $\frac{7}{24}$

    Der gemeinsame Hauptnenner ist $24$, wir erweitern also nur den ersten Bruch mit $3$, da der zweite Bruch bereits den Nenner $24$ hat:

    $\frac{2}{8} = \frac{2 \cdot 3}{8 \cdot 3} = \frac{6}{24}$

    Beispiel 6: $~\frac{2}{3}$ und $\frac{1}{5}$

    Das kleinste gemeinsame Vielfache der Zahlen $3$ und $5$ ist $15$, wir erweitern also den ersten Bruch mit $5$ und den zweiten Bruch mit $3$:

    $\frac{2}{3} = \frac{2 \cdot 5}{3 \cdot 5} = \frac{10}{15}$
    $\frac{1}{5}= \frac{1 \cdot 3}{5 \cdot 3} = \frac{3}{15}$

  • Gib an, wofür man gleichnamige Brüche benötigt.

    Tipps

    Gleichnamige Brüche sind Brüche mit gleichem Nenner.

    Beispiele:
    $\frac{1}{7} + \frac{4}{7} = \frac{5}{7}$
    $\frac{6}{9} - \frac{1}{9} = \frac{5}{9}$

    Lösung

    Gleichnamige Brüche werden beim Addieren und Subtrahieren von Brüchen benötigt. Hierbei gilt: Werden zwei gleichnamige Brüche addiert (subtrahiert), so werden die Zähler addiert (subtrahiert) und der Nenner wird beibehalten.

    Gleichnamige Brüche werden auch beim Vergleichen benötigt. Hierbei können einfach die Zähler der gleichnamigen Brüche verglichen werden.

  • Bestimme den kleinsten Hauptnenner der drei Brüche.

    Tipps

    Schreibe zunächst die ersten Vielfachen der Nenner auf.

    Lösung

    Beispiel 1: $~\frac{1}{4}$ und $\frac{5}{6}$ und $\frac{2}{3}$

    Die Nenner sind $4$, $6$ und $3$. Die Vielfachenmengen sind:

    • $V_4=\lbrace 4; 8; {\color{#669900}{12}}; 16; ... \rbrace$
    • $V_6=\lbrace 6; {\color{#669900}{12}}; 18; ... \rbrace$
    • $V_3=\lbrace 3; 6; 9; {\color{#669900}{12}}; 15; ... \rbrace$
    Der kleinste Hauptnenner ist das kleinste gemeinsame Vielfache:

    $\text{kgV}(4; 6; 3)=12$

    Beispiel 2: $~\frac{1}{8}$ und $\frac{3}{2}$ und $\frac{2}{3}$

    Die Nenner sind $8$, $2$ und $3$. Die Vielfachenmengen sind:

    • $V_8=\lbrace 8; 16; {\color{#669900}{24}}; 32; ... \rbrace$
    • $V_2=\lbrace 2; 4; 6; 8; 10; 12; 14; 16; 18; 20; 22; {\color{#669900}{24}}; 26; ... \rbrace$
    • $V_3=\lbrace 3; 6; 9; 12; 15; 18; 21; {\color{#669900}{24}}; 27; ... \rbrace$
    Der kleinste Hauptnenner ist das kleinste gemeinsame Vielfache:

    $\text{kgV}(8; 2; 3)=24$

    Beispiel 3: $~\frac{1}{18}$ und $\frac{5}{9}$ und $\frac{8}{27}$

    Die Nenner sind $18$, $9$ und $27$.Die Vielfachenmengen sind:

    • $V_{18}=\lbrace 18; 36; {\color{#669900}{54}}; 72; ... \rbrace$
    • $V_{9}=\lbrace 9; 18; 27; 36; 45; {\color{#669900}{54}}; 72; ... \rbrace$
    • $V_{27}=\lbrace 27; {\color{#669900}{54}}; 81; ... \rbrace$
    Der kleinste Hauptnenner ist das kleinste gemeinsame Vielfache:

    $\text{kgV}(18; 9; 27)=54$