30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Beweise mit den Additionssätzen führen (1) 04:30 min

Textversion des Videos

Transkript Beweise mit den Additionssätzen führen (1)

Hallo, vielleicht hast du dieses Video angeklickt, weil du neugierig bist, wozu die Additionssätze der Trigonometrie nützlich sein können. Vielleicht möchtest du auch den Beweis der Identität von sin(2 alpha) = 2sin(alpha)cos(alpha) lernen. Weißt du was? Beide Fragen werden in diesem Tutorial beantwortet. Bist du bereit? Dann geht es los. Die Gleichung sin(2alpha) = 2sin(alpha)cos(alpha) ist eine mathematische Identität. Das heißt, dass die Gleichung immer richtig ist, egal welchen Winkel man für alpha einsetzt. An einem Beispiel kannst du probieren, ob das stimmt. Setze für alpha mal den Winkel 30° ein. Um zu überprüfen, dass die Gleichung für alpha = 30° korrekt ist, rechnest du die linke und die rechte Seite aus und vergleichst das Ergebnis. Mit der linken Seite fängst du an. Der sin(2×30°) = sin(60°). Den sin(60°) kann man exakt angeben. Das ist genau 1/2√3. Auf der linken Seite der Gleichung steht also: 1/2√3. Jetzt rechnest du die rechte Seite aus. Den sin(30°) und den cos(30°) kannst du ebenfalls exakt angeben. Wenn du nicht mehr sicher bist: diese Werte findest du in deinem Tafelwerk. Der sin(30°) = 1/2. Der cos(30°) = 1/2√3. 21/2= 1. Also steht auf der rechten Seite genau wie auf der linken Seite 1/2√3. Für den Winkel alpha = 30° ist die Gleichung also erfüllt. Aber wie kann man beweisen, dass das wirklich immer so ist, egal welchen Winkel man für alpha einsetzt? Die Antwort: mithilfe der Trigonometrischen Additionssätze. Du hast wahrscheinlich schon den ersten Additionssatz kennengelernt, mit dem man den Sinus einer Summe zweier Winkel berechnen kann. Zur Wiederholung: der erste Additionssatz lautet: sin(alpha + beta) = sin(alpha) * cos(beta) + cos(alpha) * sin(beta). Auf den ersten Blick gibt es in dieser Gleichung keinen Sinus einer Summe zweier Winkel. Aber schau mal genau hin. 2 alpha kann man auch ausdrücken als alpha + alpha. Wende den ersten Additionssatz auf den linken Teil der Gleichung an. Für beta setzt du einfach ein zweites Mal alpha ein. Der sin(alpha + alpha) = sin(alpha) * cos(alpha) + cos(alpha) * sin(alpha). Indem du diese Gleichung umformst, kannst du jetzt Schritt für Schritt zeigen, dass der linke Teil der Identität gleich dem rechten Teil ist. Faktoren eines Produktes kann man vertauschen, also kannst die rechte Seite umformen und schreiben sin(alpha + alpha) = sin(alpha) * cos(alpha) + sin(alpha) * cos(alpha). Der Term sin(alpha) * cos(alpha) steht jetzt zweimal auf der rechten Seite. Wenn du die zwei Terme zusammenfasst, erhältst du sin(alpha + alpha) = 2sin(alpha)cos(alpha). Jetzt schreibst du nur noch die linke Seite wieder als sin(2 alpha) und du hast diese Identität bewiesen. Sin(2 alpha) = 2sin(alpha)cos(alpha). Du hast gesehen, dass die Additionssätze unentbehrlich sind, um trigonometrische Aussagen herleiten zu können. Eben hast du mit dem ersten Additionssatz die Identität sin(2alpha) = 2sin(alpha)*cos(alpha) bewiesen. Es gibt noch viele weitere trigonometrische Identitäten. Schau doch mal, welche du in deinem Tafelwerk findest. Viel Spaß.

Beweise mit den Additionssätzen führen (1) Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Beweise mit den Additionssätzen führen (1) kannst du es wiederholen und üben.

  • Berechne den Sinuswert von $60^\circ$ mit $\sin(2\alpha)=2\sin(\alpha)\cdot\cos(\alpha)$.

    Tipps

    Verwende den Additionssatz:

    $\sin(\alpha+\beta)=\sin(\alpha)\cdot\cos(\beta)+\cos(\alpha)\cdot\sin(\beta)$.

    Du kannst $60^\circ$ als Produkt $2\cdot30^\circ$ schreiben oder als Summe $30^\circ+30^\circ$.

    Spezielle Werte für Sinus und Kosinus findest du in der Formelsammlung.

    Lösung

    Die verwendete Formel lautet $\sin(2\alpha)=2\sin(\alpha)\cdot\cos(\alpha)$.

    Für die folgende Rechnung werden noch zwei spezielle Werte von Sinus und Kosinus benötigt, welche man einer Formelsammlung entnehmen kann:

    • $\sin(30^\circ)=\frac12$ sowie
    • $\cos(30^\circ)=\frac12 \sqrt3$.
    Da $60^\circ=2\cdot 30^\circ$ ist, erhält man somit

    $\begin{align*} \sin(60^\circ)&=\sin(2\cdot 30^\circ)\\ &=2\sin(30^\circ)\cdot \cos(30^\circ)\\ &=2\cdot \frac12\cdot\frac12\sqrt3\\ &=\frac12\sqrt3. \end{align*}$

  • Gib an, welcher Additionssatz zur Berechnung von $\sin(\alpha+\alpha)$ verwendet werden kann.

    Tipps

    Es ist nur ein Satz richtig.

    Wenn du in die richtige Gleichung $\beta=\alpha$ einsetzt, so sollte $\sin(2\alpha)=2\sin(\alpha)\cdot\cos(\alpha)$ herauskommen.

    Es gilt $2\alpha=\alpha+\alpha$.

    Lösung

    Der verwendete Additionssatz ist der erste Additionssatz:

    $\sin(\alpha+\beta)=\sin(\alpha)\cdot\cos(\beta)+\cos(\alpha)\cdot\sin(\beta)$.

  • Beschreibe, wie man $\sin(2\alpha)=2\sin(\alpha)\cdot \cos(\alpha)$ nachweisen kann.

    Tipps

    Welchen Additionssatz kannst du verwenden? Es geht um den Sinus der Summe von Winkeln.

    Der Winkel $2\alpha$ kann als Summe $\alpha+\alpha$ geschrieben werden.

    Es gilt das Kommutativgesetz: $a\cdot b=b\cdot a$.

    Lösung

    Man startet mit $\sin(2\alpha)$. Dies ist das Gleiche wie $\sin(\alpha+\alpha)$. Es kann also der erste Additionssatz

    $\sin(\alpha+\beta)=\sin(\alpha)\cdot\cos(\beta)+\cos(\alpha)\cdot\sin(\beta)$

    verwendet werden.

    Somit gilt

    $\begin{align*} \sin(\alpha+\alpha)&=\sin(\alpha)\cdot\cos(\alpha)+\cos(\alpha)\cdot\sin(\alpha)&|&\text{Kommutativgesetz}\\ &=\sin(\alpha)\cdot\cos(\alpha)+\sin(\alpha)\cdot\cos(\alpha)\\ &=2\sin(\alpha)\cdot \cos(\alpha), \end{align*}$

    womit die Aussage bewiesen wäre.

  • Leite eine Formel für $\sin(\alpha+90^\circ)$ her.

    Tipps

    Verwende den Additionssatz

    $\sin(\alpha+\beta)=\sin(\alpha)\cdot\cos(\beta)+\cos(\alpha)\cdot\sin(\beta)$.

    Zwei Formeln sind korrekt.

    Es gilt:

    • $\sin(90^\circ)=1$ sowie
    • $\cos(90^\circ)=0$.

    Der Graph der Kosinusfunktion ist achsensymmetrisch zur y-Achse.

    Lösung

    Unter Verwendung des Additionssatzes

    $\sin(\alpha+\beta)=\sin(\alpha)\cdot\cos(\beta)+\cos(\alpha)\cdot\sin(\beta)$

    kann wie folgt gerechnet werden:

    $\begin{align*} \sin(\alpha+90^\circ)&=\sin(\alpha)\cdot\cos(90^\circ)+\cos(\alpha)\cdot\sin(90^\circ)&|&~\cos(90^\circ)=0,~~\sin(90^\circ)=1\\ &=\cos(\alpha). \end{align*}$

    Auf Grund der Achsensymmetrie zur y-Achse der Kosinusfunktion gilt $\cos(\alpha)=\cos(-\alpha)$ und somit

    $\sin(\alpha+90^\circ)=\cos(-\alpha)$.

  • Berechne $\sin(45^\circ)$.

    Tipps

    Verwende die Formel $\sin(2\alpha)=2\sin(\alpha)\cdot\cos(\alpha)$ zur Berechnung von $\sin(90^\circ)$.

    Betrachte ein rechtwinkliges, gleichschenkliges Dreieck. Gib in diesem den Sinus und den Kosinus des spitzen Winkels, dieser ist $45^\circ$, an.

    Die Gleichung $1=2\sin^2(\alpha)$ kann nach $\sin(\alpha)$ aufgelöst werden.

    Lösung

    Da $90^\circ=2\cdot 45^\circ$ gilt und $\sin(2\alpha)=2\sin(\alpha)\cdot\cos(\alpha)$ kann daraus abgeleitet werden:

    $\begin{align*} 1=\sin(90^\circ)&=\sin(2\cdot 45^\circ)\\ &=2\sin(45^\circ)\cdot\cos(45^\circ)&|&~\cos(45^\circ)=\sin(45^\circ)\\ &=2\sin^2(45^\circ). \end{align*}$

    Nun kann diese Gleichung nach $\sin(45^\circ)$ umgeformt werden:

    $\begin{align*} 1&=2\sin^2(45^\circ)&|&:2\\ \frac12&=\sin^2(45^\circ)&|&\sqrt{}\\ \pm \frac1{\sqrt2}&=\sin(45^\circ). \end{align*}$

    Der negative Wert ist nicht möglich: wie man an dem Bild erkennen kann, muss $\sin(45^\circ)$ positiv sein. Also ist $\sin(45^\circ)=\frac1{\sqrt2}$.

  • Weise nach, dass $\sin(90^\circ-\alpha)=\cos(\alpha)$ gilt.

    Tipps

    Zur Berechnung des Sinuswertes der Differenz zweier Vektoren wird der Additionssatz

    $\sin(\alpha-\beta)=\sin(\alpha)\cdot \cos(\beta)-\cos(\alpha)\cdot\sin(\beta)$

    verwendet.

    Die Nullstellen von Kosinus sind die ungeraden Vielfachen von $90^\circ$.

    An den Stellen, an denen Kosinus den Wert $0$ annimmt, nimmt Sinus den Wert $±1$ an.

    Lösung

    Hier kann der zweite Additionssatz verwendet werden:

    $\sin(\alpha-\beta)=\sin(\alpha)\cdot \cos(\beta)-\cos(\alpha)\cdot\sin(\beta)$:

    $\begin{align*} \sin(90^\circ-\alpha)&=\sin(90^\circ)\cdot \cos(\alpha)-\cos(90^\circ)\cdot\sin(\alpha)&|&~\sin(90^\circ)=1,~\cos(90^\circ)=0\\ &=1\cdot \cos(\alpha)-0\cdot\sin(\alpha)\\ &=\cos(\alpha). \end{align*}$