30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Additionssätze sin(a+b) und sin(a-b) – Herleitung und Beweis 10:10 min

Textversion des Videos

Transkript Additionssätze sin(a+b) und sin(a-b) – Herleitung und Beweis

Mit den Additionssätzen der Trigonometrie kannst du Winkelformen von Summen oder Differenzen von Winkeln berechnen. Die ersten zwei Additionssätze lauten sin(α + β) = sin(α) * cos(β) + cos(α) * sin(β). Und sin(α - β) = sin(α) * cos(β) - cos(α) * sin(β). Wie kommt man eigentlich auf diese Sätze? Und warum ist der Beweis des zweiten Satzes viel kürzer als der des ersten? Diese Fragen beantwortet dieses Video. Wir beginnen mit der Herleitung des Additionssatzes sin(α + β) = sin(α) * cos(β) + cos(α) * sin(β). Es gibt verschiedene Möglichkeiten, diesen Satz herzuleiten. Eine einfache geometrische Herleitung, die vielleicht auch dein Lehrer in der Schule gezeigt hat, benutzt den Sinussatz. Zur Erinnerung: der Sinussatz besagt, dass in einem Dreieck das Verhältnis der Länge einer Seite zum Sinus ihres gegenüberliegenden Winkels gleich dem Verhältnis einer beliebigen anderen Seite zum Sinus ihres gegenüberliegenden Winkels ist. Also a/sin(α) = b/sin(β) = c/sin(γ). In das Dreieck zeichnest du außerdem noch die Höhe auf der Seite C ein. Die brauchst du für diesen Beweis auch. Jetzt beginnt der eigentliche Beweis. Du fängst an mit dem Aufstellen des Sinussatzes für die Seiten a und c. Also a/sin(α) = c/sin(γ). Diese Gleichung stellst du nach sin(γ) um, indem du sie mit sin(γ) und mit sin(α) multiplizierst und dann durch a teilst. Du erhältst sin(γ) = (c * sin(α))/a. In unserem Additionstheorem taucht γ ja gar nicht auf. Kannst du den Winkel γ irgendwie anders ausdrücken? Ja, denn du weißt, dass die Winkelsumme in einem Dreieck 180° beträgt. Also ist γ = 180° - (α + β). Diesen Ausdruck setzt du in die Gleichung sin(γ) = (c * sin(α))/a für γ ein. sin(180° - (α + β)) = (c * sin(α))/a. Hast du die Eigenschaften der Sinusfunktion im Kopf? Wenn nicht, schlage noch einmal in deinem Mathebuch oder im Tafelwerk nach. Dort findest du, dass der sin(π - x) = sin(x). π im Bogenmaß entspricht aber genau 180° im Gradmaß. Also kannst du die Gleichung vereinfachen und erhältst sin(α + β) = (c * sin(α))/a. Ist dir aufgefallen, dass die linke Seite dieser Gleichung schon aussieht wie die linke Seite des Additionssatzes? Was jetzt noch stört, sind das c und das a auf der rechten Seite, denn sie tauchen im Additionssatz nicht auf. Wir versuchen zunächst, die Länge der Seite c durch andere Größen auszudrücken. Dazu bietet sich die Zerlegung in die Teilstrecken AD und DB an. Du kannst also schreiben: sin(α + β) = ((AD + DB) * sin(α))/a = (AD * sin(α))/a + (DB * sin(α))/a. Schau dir doch mal das Dreieck an. Die Strecke DB und die Seite a sind Ankathete und Hypotenuse zum Winkel β im rechtwinkligen Teildreieck BCD. Versuche dich an die trigonometrischen Beziehungen in einem rechtwinkligen Dreieck zu erinnern. Es gilt: der cos(β) = Ankathete DB / Hypotenuse a. Das kannst du schon in der Gleichung ersetzen. Du siehst, dass das Additionstheorem schon fast dasteht. Den Term AD durch a kannst du leider nicht als Winkelfunktion schreiben. Die beiden Strecken sind nicht Teil eines gleichen rechtwinkligen Dreiecks. Hier hilft ein Trick. Du wendest noch einmal den Sinussatz an. Wie wir am Anfang wiederholt haben, ist a/sin(α) = b/sin(β). Nun multiplizieren wir beide Seiten der Gleichung zuerst mit sin(α) und sin(β) und erhalten a * sin(β) = b * sin(α). Nun teilen wir die beiden Seiten der Gleichung durch a und durch b und erhalten sin(β)/b = sin(α)/a. Du ersetzt also sin(α) durch a mit sin(β) durch b. Jetzt steht in der Gleichung der Ausdruck AD/b. Na, ahnst du schon was jetzt kommt? Genau. AD und b sind wieder Ankathete und Hypotenuse, diesmal zum Winkel α im Teildreieck ADC. cos(α) ist also AD/b. Ersetze jetzt in der Gleichung AD/b mit cos(α). Dann hast du das erste Additionstheorem bewiesen. Das zweite Additionstheorem kannst du mithilfe des ersten Additionstheorems, das du ja jetzt bereits bewiesen hast, wesentlich schneller herleiten. Du setzt in das erste Additionstheorem statt β den Winkel -β ein. sin(α + (-β)) = sin(α) * cos(-β) + cos(α) * sin(-β). Auf der linken Seite steht dann natürlich sin(α - β). Wenn du dir wieder die Eigenschaften der Sinus- und Kosinusfunktionen ins Gedächtnis rufst, kannst du auch die rechte Seite vereinfachen. Die Kosinusfunktion ist symmetrisch zur y-Achse. Daher gilt cos(-β) = cos(β). Für die Sinusfunktion gilt dagegen die Beziehung sin(-β) = -sin(β). Jetzt kannst du die Gleichung vereinfachen. Für cos(-β) setzt du cos(β) ein. Für sin(-β) setzt du -sin(β) ein. Damit wird das zweite Produkt negativ, aus dem Plus wird ein Minus. sin(α - β) = sin(α) * cos(β) - cos(α) * sin(β). Damit hast du auch den zweiten Additionssatz bewiesen. War doch gar nicht so schwer, oder? Der erste Additionssatz wurde mithilfe des Sinussatzes bewiesen. Für die Herleitung des zweiten Additionssatzes konntest du gleich den eben bewiesenen ersten Additionssatz verwenden und so viel Zeit sparen. Viel Spaß.

1 Kommentar
  1. Super Video ! Vielen Dank

    Von Oliver G., vor mehr als 2 Jahren

Additionssätze sin(a+b) und sin(a-b) – Herleitung und Beweis Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Additionssätze sin(a+b) und sin(a-b) – Herleitung und Beweis kannst du es wiederholen und üben.

  • Vervollständige den Beweis des Additionssatzes $\sin(\alpha-\beta)=\sin(\alpha)\cdot\cos(\beta)-\cos(\alpha)\cdot \sin(\beta)$.

    Tipps

    Schau dir den Verlauf der Sinus- und Kosinusfunktion an.

    Wenn eine Funktion achsensymmetrisch ist, zu welcher Achse ist sie dann symmetrisch?

    Lösung

    Es wird der Additionssatz

    $\sin(\alpha+\beta)=\sin(\alpha)\cdot\cos(\beta)+\cos(\alpha)\cdot \sin(\beta)$

    verwendet. Um den Satz für $\sin(\alpha-\beta)$ zu beweisen, wird in dem Additionssatz $\beta$ durch $-\beta$ ersetzt.

    $\sin(\alpha+(-\beta))=\sin(\alpha)\cdot\cos(-\beta)+\cos(\alpha)\cdot \sin(-\beta)$.

    Es gilt:

    • die Kosinusfunktion ist achsensymmetrisch zur y-Achse, das heißt $\cos(-\beta)=\cos(\beta)$, sowie
    • die Sinusfunktion ist punktsymmetrisch zum Koordinatenursprung, also $\sin(-\beta)=-\sin(\beta)$.
    Wenn man diese beiden Eigenschaften verwendet, erhält man

    $\begin{align*} \sin(\alpha+(-\beta))&=\sin(\alpha)\cdot\cos(\beta)+\cos(\alpha)\cdot (-\sin(\beta))\\ &=\sin(\alpha)\cdot\cos(\beta)-\cos(\alpha)\cdot \sin(\beta). \end{align*}$

    Dies ist der gesuchte Additionssatz.

  • Gib den Sinussatz an.

    Tipps

    Der Sinussatz trifft eine Aussage über das Verhältnis einer Seite zu dem Sinus des gegenüber liegenden Winkels in beliebigen Dreiecken.

    Mache dir diesen Satz am Beispiel eines rechtwinkligen Dreiecks klar.

    Lösung

    Der Sinussatz lautet:

    $\frac a{\sin(\alpha)}=\frac b{\sin(\beta)}=\frac c{\sin(\gamma)}$.

    Das heißt, dass in einem beliebigen Dreieck das Verhältnis einer Seite zu dem Sinus des gegenüber liegenden Winkels immer gleich ist.

    Daraus kann man zum Beispiel Folgendes ableiten: Willst du die Winkel eines Dreiecks der Größe nach ordnen, so kannst du die Seiten des Dreiecks der Länge nach ordnen. Der längsten Seite gegenüber befindet sich dann der größte Winkel, der kürzesten Seite gegenüber befindet sich der kleinste Winkel. In einem rechtwinkligen Dreieck ist der rechte Winkel, $90^\circ$, der größte. Die diesem Winkel gegenüber liegende Seite, die Hypotenuse, ist also die längste Seite in dem rechtwinkligen Dreieck.

  • Ergänze den Beweis des Additionssatzes $\sin(\alpha+\beta)=\sin(\alpha)\cdot\cos(\beta)+\cos(\alpha)\cdot \sin(\beta)$.

    Tipps

    In einem rechtwinkligen Dreieck gilt:

    $\cos(\alpha)=\Large{\frac{\text{Ankathete von }\alpha}{\text{Hypotenuse}}}$.

    Der Sinussatz kann auch wie folgt formuliert werden:

    $\large{\frac{\sin(\alpha)}a=\frac{\sin(\beta)}b=\frac{\sin(\gamma)}c}$.

    Lösung

    Zum Beweis dieses Additionssatzes kann man mit dem Sinussatz beginnen. Es gilt

    $\frac c{\sin(\gamma)}=\frac a{\sin(\alpha)}$.

    Dies ist äquivalent zu $\sin(\gamma)=\frac{\sin(\alpha)\cdot c}{a}$.

    Da die Innenwinkel eines Dreiecks sich zu $180^\circ$ addieren, gilt $\gamma=180^\circ-(\alpha+\beta)$ und damit $\sin(\gamma)=\sin(180^\circ-(\alpha+\beta))=\sin(\alpha+\beta)$.

    Die Seite $c$ lässt sich, wie in dem Bild zu erkennen, aufteilen in die Strecken $\overline{AD}$ sowie $\overline{DB}$. Somit ist

    $\begin{align*} \frac{\sin(\alpha)\cdot c}{a}&=\frac{\sin(\alpha)\cdot (\overline{AD}+\overline{DB})}{a}\\ &=\frac{\sin(\alpha)\cdot (\overline{AD})}{a}+\frac{\sin(\alpha)\cdot (\overline{DB})}{a}. \end{align*}$

    In dem Dreieck $DBC$ gilt $\cos(\beta)=\frac{\overline{DB}}a$.

    Somit gilt bereits:

    $\sin(\alpha+\beta)=\frac{\sin(\alpha)\cdot (\overline{AD})}{a}+\sin(\alpha)\cdot \cos(\beta)$.

    Nun muss nur der Term $\frac{\sin(\alpha)\cdot (\overline{AD})}{a}$ betrachtet werden: Man verwendet wieder den Sinussatz und erhält:

    $\frac{\sin(\beta)}{b}=\frac{\sin(\alpha)}{a}$.

    Somit ist

    $\frac{\sin(\alpha)\cdot (\overline{AD})}{a}=\frac{\sin(\beta)\cdot (\overline{AD})}{b}$.

    Nun kann in dem Dreieck $ADC$ die Winkelbeziehung $\cos(\alpha)=\frac{\overline{AD}}b$ verwendet werden:

    $\frac{\sin(\beta)\cdot (\overline{AD})}{b}=\sin(\beta)\cdot \cos(\alpha)$.

    Damit ist der Satz bewiesen:

    $\sin(\alpha+\beta)=\sin(\beta)\cdot \cos(\alpha)+\sin(\alpha)\cdot \cos(\beta)$.

    In der gängigen und etwas leichter einzuprägenden Schreibweise heißt es dann:

    $\sin(\alpha+\beta)=\sin(\alpha)\cdot \cos(\beta)+\cos(\alpha)\cdot \sin(\beta) $.

  • Stelle mit Hilfe eines Additionssatzes eine Formel für $\sin(2\alpha)$ auf.

    Tipps

    Verwende den Additionssatz

    $\sin(\alpha+\beta)=\sin(\alpha)\cdot\cos(\beta)+\cos(\alpha)\cdot\sin(\beta)$.

    Schreibe $2\alpha$ als Summe $\alpha+\alpha$.

    Lösung

    Man kann den Additionssatz

    $\sin(\alpha+\beta)=\sin(\alpha)\cdot\cos(\beta)+\cos(\alpha)\cdot\sin(\beta)$

    verwenden.

    $\begin{align*} \sin(2\alpha)&=\sin(\alpha+\alpha)\\ &=\sin(\alpha)\cdot\cos(\alpha)+\cos(\alpha)\cdot\sin(\alpha)\\ &=2\sin(\alpha)\cdot \cos(\alpha). \end{align*}$

  • Berechne den Sinuswert von $135^\circ$.

    Tipps

    Der Winkel $135^\circ$ kann sowohl durch die Summe $90^\circ+45^\circ$ als auch durch die Differenz $180^\circ-45^\circ$ beschrieben werden.

    Es gelten $\sin(90^\circ)=1$ und $\cos(90^\circ)=0$ sowie $\sin(180^\circ)=0$ und $\cos(180^\circ)=-1$

    Lösung

    Es gilt

    $\sin(135^\circ)=\sin(90^\circ+45^\circ)=\sin(90^\circ)\cdot \cos(45^\circ)+\cos(90^\circ)\cdot \sin(45^\circ)$.

    Da $\sin(90^\circ)=1$ ist und $\cos(90^\circ)=0$, folgt $\sin(135^\circ)=\frac1{\sqrt2}$.

  • Leite mit einem Additionssatz her, dass $\sin(180^\circ-\alpha)=\sin(\alpha)$ gilt.

    Tipps

    Wie du in dem obigen Bild erkennen kannst ist der Graph der Sinusfunktion symmetrisch zu einer Achse, welche durch $x=90^\circ$ verläuft.

    Wenn du die Sinusfunktion um $90^\circ$ auf der $x$-Achse nach links verschiebst, so erhältst du die Kosinus-Funktion.

    Die Nullstellen von Sinus sind die ganzzahligen Vielfachen von $180^\circ$.

    Lösung

    Es kann der Additionssatz $\sin(\alpha-\beta)=\sin(\alpha)\cdot \cos(\beta)-\cos(\alpha)\cdot \sin(\beta)$ angewendet werden. Dabei wird $\alpha$ durch $180^\circ$ ersetzt und $\beta$ durch $\alpha$.

    Es gilt also:

    $\sin(180^\circ-\alpha)=\sin(180^\circ)\cdot \cos(\alpha)-\cos(180^\circ)\cdot \sin(\alpha)$.

    Nun gilt

    • $\sin(180^\circ)=0$ sowie
    • $\cos(180^\circ)=-1$, also
    $\begin{align*} \sin(180^\circ-\alpha)&=0\cdot \cos(\alpha)-(-1)\cdot \sin(\alpha)\\ &=\sin(\alpha). \end{align*}$