30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Parameter der Exponentialfunktion

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 4.9 / 9 Bewertungen

Die Autor*innen
Avatar
Team Digital
Parameter der Exponentialfunktion
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Grundlagen zum Thema Parameter der Exponentialfunktion

Nach dem Schauen dieses Videos wirst du die Auswirkungen der verschiedenen Parameter auf die Exponentialfunktion kennen.

Was sind Parameter

Zunächst werden wir uns die Verschiebung des Funktionsgraphen entlang der y-Achse (nach oben bzw. unten) anschauen. Anschließend betrachten wir die Verschiebung entlang der x-Achse (nach links bzw. rechts). Abschließend erfährst du, welcher Parameter den Funktionsgraphen streckt bzw. staucht, wann sich das Monotonieverhalten ändert und wie man den Graphen einer Exponentialfunktion an der x-Achse spiegeln kann.

Die Parameter der Exponentialfunktion

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Parameter, Asymptote, Spiegelung an den Koordinatenachsen, Monotonieverhalten oder Streckfaktor.

Bevor du dieses Video schaust, solltest du bereits die Definition und die wichtigsten Eigenschaften von Exponentialfunktionen kennen.

Transkript Parameter der Exponentialfunktion

Jetzt mal ehrlich Die Graphen von Exponentialfunktionen findet man doch nirgendwo im Alltag. Obwohl Die Krümmungslinie der Banane erinnert, schon stark an eine Exponentialfunktion. Oder der Verlauf der Hörner dieses Yaks oder die Wuchsform dieser Pflanze oder der geschwungene Flügel eines Aras. Ja okay, das ist bestimmt kein perfekter Verlauf der Exponentialfunktion, aber vielleicht kann man ja Funktionsgraphen entsprechend Formen? Dafür müssen die „Parameter der Exponentialfunktion“ angepasst werden. Aber erstmal von vorne: Bei Exponentialfunktionen steht die Variable im Exponenten. Das bedeutet, der Funktionswert nimmt mit jedem x-Wert eine andere Potenz zur Basis an. Die Basis a ist dabei eine positive, reelle Zahl. Jedoch ist a niemals eins. Schauen wir uns einmal die Funktionsgraphen an. Ist a größer als eins, so verläuft die Funktion streng monoton steigend. Und wenn a kleiner als eins ist, dann ist der Verlauf streng monoton fallend. Dabei ist „eins durch a hoch x“ die Funktion, die entsteht, wenn man „a hoch x“ an der y-Achse spiegelt. „Ein halb hoch x“ wäre zum Beispiel die Spiegelung von „zwei hoch x“. So weit, so gut. Nun können neben der Basis a noch weitere Parameter in der Funktionsgleichung enthalten sein. Parameter sind konstante Hilfsvariablen, die den Verlauf des Funktionsgraphen beeinflussen. Wir nennen sie hier a, b, c und d - aber in vielen Lehrbüchern werden sie auch anders genannt. Fangen wir erstmal mit dem einfachsten an. Der Parameter d verschiebt den Funktionsgraphen nach oben oder nach unten. Schauen wir uns einmal den Graphen von „zwei hoch x“ an. Hier ist „d gleich Null“, der Graph ist also nicht verschoben. Im Gegensatz dazu ist der Graph von „zwei hoch x plus zwei“ um zwei Einheiten nach oben verschoben. Und der Graph „zwei hoch x minus eins“ um eine Einheit nach unten. Der Parameter d ist in diesen beiden Beispielen also zwei und minus eins. Diese Verschiebung hat natürlich eine Auswirkung auf die Asymptote. Statt der x-Achse, also der Geraden „y gleich Null“, ist es nun die waagerechte Gerade „y gleich zwei“ beziehungsweise „y gleich minus eins“. Allgemein lautet die Asymptote von Funktionen der Form „a hoch x plus d“ somit „y gleich d“. Der Parameter d verschiebt also die Funktion parallel zur y-Achse. Ist d größer als null, wird der Graph nach oben verschoben und ist d kleiner als null, dann wird der Graph nach unten verschoben. Diesen Einfluss auf den Verlauf des Funktionsgraphen kennt man ja eigentlich schon von der Normalparabel. Als nächstes betrachten wir den Parameter c, der die Funktion auch verschiebt, allerdings nicht nach oben oder unten, sondern nach links oder rechts. Schauen wir uns zuerst wieder das Beispiel „zwei hoch x“ an. Auch hier ist „c gleich Null“, deshalb wird „g eins“ nicht verschoben. Setzen wir für c eine positive Zahl, zum Beispiel vier ein, so verschiebt sich die Funktion „zwei hoch x plus vier“ um vier Einheiten nach links. Und bei der Funktion „zwei hoch x minus zwei“ verschiebt sich die Funktion um zwei Einheiten nach rechts. Wenn wir x mit einer positiven Zahl addieren, dann verschiebt sich der Graph nach links und nicht, wie man denken könnte, nach rechts. diese Subtraktion können wir auch als Addition schreiben. Addieren wir also eine negative Zahl, dann verschiebt sich der Funktionsgraph nach rechts. Der Parameter c verschiebt den Graphen um c Einheiten nach links, wenn c größer als null ist und nach rechts, wenn c kleiner als Null ist. Auch diese Verschiebung des Funktionsgraphen kennt man schon von der Normalparabel. Der letzte Parameter b streckt oder staucht den Funktionsgraphen in Richtung der y-Achse. Auch hier lohnt sich ein Blick zurück auf die Parabeln. b wird deshalb auch Streckfaktor genannt. Bleiben wir bei unserem Beispiel „zwei hoch x“. Hier ist „b gleich eins“ und der Graph ist weder gestreckt noch gestaucht. Wird für b jedoch drei eingesetzt, wird die Funktion durch den Parameter b ganz schön in die Höhe gestreckt. Wenn b dagegen kleiner als eins ist, zum Beispiel 0,5 wird die Funktion gestaucht. Aber dieser Parameter kann noch mehr. Wenn b eine negative Zahl ist, ändert sich das Monotonieverhalten. Zum Beispiel so. Und wenn „b gleich minus eins“ ist, dann erkennen wir, dass dadurch die Funktion „zwei hoch x“ an der x-Achse gespiegelt wird. Der Parameter b kann also nicht nur den Funktionsgraphen strecken und stauchen, sondern hat auch Auswirkungen auf das Monotonieverhalten des Funktionsgraphen. Aus einer monoton steigenden Funktion wird eine monoton fallende Funktion. Und aus einer monoton fallenden Funktion wie zum Beispiel „ein Drittel hoch x“ wird mit einem negativen Vorfaktor eine monoton steigende Funktion. So, das sollte nun aber erstmal reichen. Fassen wir nun noch kurz zusammen. Die Parameter der Exponentialfunktion haben unterschiedliche Auswirkungen auf den Verlauf des Funktionsgraphen. Der Parameter d verschiebt die Funktion entlang der Y-Achse, also nach oben oder unten und hat Auswirkungen auf die Asymptote. Der Parameter c verschiebt die Funktion hingegen entlang der X-Achse, also nach links oder rechts. Der Parameter b ist der Streckfaktor der Funktion. Das heißt, er kann den Funktionsgraphen strecken oder stauchen. Ist b negativ, so ändert sich außerdem das Monotonieverhalten. Im Fall „b gleich minus eins“ wird die ursprüngliche Funktion an der x-Achse gespiegelt. Nach diesem intensiven Input wirst du vermutlich nur noch Exponentialfunktionen im Alltag sehen.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

2.575

sofaheld-Level

5.767

vorgefertigte
Vokabeln

10.212

Lernvideos

42.291

Übungen

37.370

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden