30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Parameter bei der Sinusfunktion

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 5.0 / 5 Bewertungen

Die Autor*innen
Avatar
Team Digital
Parameter bei der Sinusfunktion
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Grundlagen zum Thema Parameter bei der Sinusfunktion

Nach dem Schauen dieses Videos wirst du in der Lage sein, die Parameter der allgemeinen Sinusfunktion zu nennen und ihren Einfluss auf den Funktionsgraphen zu beschreiben.

Zunächst wiederholst du, welche grundlegenden Eigenschaften die Sinuskurve besitzt. Anschließend lernst du die vier verschiedenen Parameter a, b, c und d kennen und erfährst, welchen Einfluss sie auf den Funktionsgraphen haben.

Lerne etwas über die Modellierung von Schallwellen mit Hilfe der Sinuskurve.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Sinusfunktion, Funktionsgraph, Amplitude, Periodenlänge, Streckung und Stauchung.

Bevor du dieses Video schaust, solltest du bereits wissen, wie der Sinus definiert ist und wie der Funktionsgraph der klassischen Sinusfunktion aussieht.

Nach diesem Video wirst du darauf vorbereitet sein, den Einfluss der Parameter bei der Cosinusfunktion auf dessen Funktionsgraphen kennenzulernen.

Transkript Parameter bei der Sinusfunktion

Straßenmusiker „Jimi Helix“ ist mal wieder voll in seinem Element. Er sprüht nur so vor Energie und entertaint sein Publikum mit wohlklingendem Schall. Dabei verlassen nur die allerbesten Schallwellen seine Instrumente! Wollen wir diese Schallwellen genauer untersuchen, helfen uns dabei die „Parameter bei der Sinusfunktion“. Tatsächlich können wir Schallwellen sehr gut mit der Sinusfunktion modellieren. Hier sehen wir den Graphen der Sinusfunktion mit der Funktionsgleichung „f von x gleich Sinus von x“. Es handelt sich um eine Kurve, die regelmäßig um die x-Achse zwischen y gleich eins und y gleich minus eins schwingt. Die Hoch- und Tiefpunkte liegen jeweils bei einem Vielfachen von ein halb Pi auf der x-Achse. Ihr Abstand zur x-Achse beträgt jeweils genau eins. Wir sprechen von der Amplitude, also der Auslenkung der Sinuskurve. Außerdem ist der Sinus periodisch. Wie wir sehen können, wiederholt sich der Verlauf des Funktionsgraphen periodisch im Abstand von zwei Pi. Soviel zu den wichtigsten Eigenschaften der klassischen Sinusfunktion. Die Funktionsgleichung der allgemeinen Sinusfunktion sieht so aus: Okay, da müssen wir uns erstmal einen Überblick verschaffen: Wir haben es mit insgesamt vier Parametern zu tun: A, b, c und d. Welchen Einfluss diese Parameter auf den Funktionsgraphen haben, schauen wir uns nun Schritt für Schritt an. Beginnen wir mit dem Faktor vor dem Sinus, dem Parameter a: Wir betrachten hierfür die Funktion „f von x gleich a mal Sinus von x“. Bei der klassischen Sinusfunktion ist a einfach gleich eins. Doch wie ändert sich der Graph, wenn wir verschiedene Werte für a einsetzen? Für a gleich zwei sieht er zum Beispiel so aus. Alle Funktionswerte sind nun jeweils doppelt so groß. Die Hochpunkte liegen dementsprechend jetzt bei y gleich zwei, die Tiefpunkte bei y gleich minus zwei. Die Amplitude hat sich also von eins auf zwei verdoppelt. Der Graph ist in y-Richtung gestreckt. Setzen wir für a hingegen null Komma fünf ein, so wird der Graph in y-Richtung gestaucht. Die Funktionswerte sind jetzt nur noch halb so groß wie bei der klassischen Sinusfunktion. Und auch die Amplitude ist dementsprechend nur noch halb so groß. Wir merken uns: Der Parameter a gibt die Amplitude der Sinusfunktion an. Ist der Betrag von a größer als eins, wird der Funktionsgraph in y-Richtung gestreckt. Ist der Betrag von a hingegen kleiner als eins, so wird der Graph in y-Richtung gestaucht. Im Hinblick auf die Schallwellen ist die Amplitude für die Lautstärke des Tons verantwortlich. Je größer die Amplitude der Schallwellen ist, desto lauter wird der Ton wahrgenommen. Kommen wir zu Parameter b. Um diesen zu untersuchen, setzen wir in die Funktionsgleichung „f von x gleich Sinus von b mal x“ verschiedene Werte für b ein. Wenn wir eine zwei einsetzen, wird der Graph zusammengedrückt. Setzen wir für b jedoch null Komma fünf ein, so wird die Sinuskurve wie eine Spirale auseinandergezogen. Der Funktionsgraph wird also erneut gestreckt oder gestaucht, allerdings in x-Richtung. Dadurch ändert sich die Periodenlängen. Ist der Betrag von b größer als eins, wird der Graph gestaucht. Ist der Betrag hingegen kleiner als eins, führt das zu einer Streckung. In der Musik entsprechen unterschiedliche Periodenlängen bei einem festgelegtem Zeitintervall unterschiedlichen Tonhöhen. Oh, dann mal schnell weiter zum nächsten Parameter. Dafür brauchen wir die Funktionsgleichung „f von x gleich Sinus von x minus c“. Für c gleich eins beobachten wir diese Änderung: Der Funktionsgraph verschiebt sich in Richtung der x-Achse um eine Längeneinheit nach rechts. Setzen wir hingegen minus eins in die Funktionsgleichung, erhalten wir „f von x gleich Sinus von x plus eins“. Der Graph wird um eine Längeneinheit nach links verschoben. Wir merken uns also: Der Parameter c ist für eine Verschiebung des Funktionsgraphen auf der x-Achse verantwortlich. Ist c größer als null, wird der Graph nach rechts verschoben. Ist c kleiner als null, wird der Graph nach links verschoben. Mehrere Sinuskurven, die auf diese Weise modifiziert wurden, können wir uns als aufeinanderfolgende Töne beim Kanon singen vorstellen. Jetzt fehlt nur noch der Parameter d. Die entsprechende Funktionsgleichung lautet „f von x gleich Sinus von x plus d“. Auch hier setzen wir zunächst einen positiven Wert ein, zum Beispiel eins. Der Graph wird um den entsprechenden Wert nach oben verschoben. Für negative Werte, wie minus eins, wandert der gesamte Graph dementsprechend nach unten. Unser Parameter d verschiebt also den Funktionsgraphen in y-Richtung: Für d größer null, nach oben und für d kleiner null, nach unten. Sinusfunktionen die stark nach oben oder unten verschoben wurden, entsprechen Wellen, die wir mit unserem menschlichen Gehör nicht wahrnehmen können. Perfekt, jetzt haben wir alle Parameter beisammen. Wir fassen nochmal alle wichtigen Infos auf einen Blick zusammen: Die allgemeine Sinusfunktion enthält insgesamt vier Parameter. Parameter a streckt oder staucht den Funktionsgraphen entlang der y-Achse. Er ist somit verantwortlich für die Amplitude der Funktion. Parameter b streckt oder staucht den Graphen ebenfalls, allerdings entlang der x-Achse. Er beeinflusst somit die Periodenlänge der Sinusfunktion. Die Parameter c und d verschieben den Graphen jeweils. C bewirkt Verschiebungen in x-Richtung, also nach rechts oder links und d Verschiebungen in y-Richtung, sprich nach oben oder unten. Jetzt haben wir einen guten Überblick über die verschiedenen Parameter und ihren Einfluss auf den Graphen der allgemeinen Sinusfunktion. Dann kanns ja jetzt richtig losgehen, „Jimi Helix“ setzt zum epischen Gitarrensolo an. Oh man, manchmal liegt die Kunst wohl doch eher in der Stille.

Parameter bei der Sinusfunktion Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Parameter bei der Sinusfunktion kannst du es wiederholen und üben.
  • Beschreibe die Auswirkung der Parameter im Funktionsterm auf den Graphen im Vergleich zu $\sin(x)$.

    Tipps

    Bei $a \cdot \sin(b \cdot (x - c)) + d$ verschieben $c$ und $d$ die Funktion. Die Parameter $a$ und $b$ führen zu einer Streckung oder Stauchung des Graphen.

    Die beiden Parameter $a$ und $d$ wirken sich in $y$-Richtung aus, während $b$ und $c$ Lage und Verlauf des Graphen in $x$-Richtung beeinflussen.

    Lösung

    Die allgemeine Sinusfunktion $a \cdot \sin(b \cdot (x - c)) + d$ enthält vier Parameter.

    • Parameter $a$ streckt oder staucht den Funktionsgraphen entlang der $y$-Achse. Dabei gilt: Für $\vert a \vert \lt 1$ wird der Graph gestaucht, für $\vert a \vert \gt 1$ gestreckt.
    • Parameter $b$ streckt oder staucht den Graphen entlang der $x$-Achse. Dabei gilt: Für $\vert b \vert \lt 1$ wird der Graph gestreckt, für $\vert b \vert \gt 1$ gestaucht.
    • Parameter $c$ bewirkt eine Verschiebung in $x$-Richtung, also nach rechts oder links.
    • Parameter $d$ bewirkt eine Verschiebung in $y$-Richtung, also nach oben oder unten.

    Betrachten wir die gegebenen Funktionsterme:

    1. $\sin(2x)$: Hier ist $b = 2$, damit ist der Graph in $x$-Richtung gestaucht, da $2 \gt 1$ ist.
    2. $\sin(x) + 1$: Hier ist $d = 1$, damit ist der Graph um $+ 1$ in $y$-Richtung, also nach oben, verschoben.
    3. $\sin(x -1)$: Hier ist $c = 1$, damit ist der Graph um $+ 1$ in $x$-Richtung, also nach rechts, verschoben.
    4. $0,5\sin(x)$: Hier ist $a = 0,5$, damit ist der Graph in $y$-Richtung gestaucht, da $0,5 \lt 1$ ist.
    5. $\sin(x + 1) = \sin(x - (-1))$: Hier ist $c = -1$, damit ist der Graph um $- 1$ in $x$-Richtung, also nach links, verschoben.
    6. $\sin(0,5x)$: Hier ist $b = 0,5$, damit ist der Graph in $x$-Richtung gestreckt, da $0,5 \lt 1$ ist.
  • Vervollständige den Text zu Parametern bei der Sinusfunktion.

    Tipps

    Mit Amplitude wird der Ausschlag der Schwingung einer Sinuskurve nach unten und oben bezeichnet.

    Die Periodenlänge gibt an, in welchem Zeitraum eine vollständige Schwingung durchlaufen wird.

    Lösung

    Die vier Parameter bei der allgemeinen Sinusfunktion $a \cdot \sin(b \cdot (x - c)) + d$ haben folgende Bedeutung:

    • Parameter $c$ bewirkt eine Verschiebung in $x$-Richtung, also nach rechts oder links. Zum Beispiel ist bei $\sin(x -1)$der Parameter $c = 1$. Damit ist der Graph um $+ 1$ in $x$-Richtung, also nach rechts, verschoben.
    • Parameter $d$ bewirkt eine Verschiebung in $y$-Richtung, also nach oben oder unten. Zum Beispiel ist bei $\sin(x) + 1$ der Parameter $d = 1$. Damit ist der Graph um $+ 1$ in $y$-Richtung, also nach oben, verschoben.
    • Parameter $a$ streckt oder staucht den Funktionsgraphen entlang der $y$-Achse. Daher bestimmt er den Ausschlag der Sinuskurve, die sogenannte Amplitude. Zum Beispiel ist bei $0,5\sin(x)$ der Parameter $a = 0,5$. Damit ist der Graph in $y$-Richtung gestaucht.
    • Parameter $b$ streckt oder staucht den Graphen entlang der $x$-Achse. Daher ist er maßgeblich für die Dauer einer Schwingung, die solgenannte Periodenlänge. Zum Beispiel ist bei $\sin(0,5x)$ der Parameter $b = 0,5$. Damit ist der Graph in $x$-Richtung gestreckt.
  • Entscheide, wodurch sich der Graph der Funktionen vom Graph von $\text{sin}(x)$ unterscheidet.

    Tipps

    Überlege zunächst, ob eine Verschiebung oder eine Streckung bzw. Stauchung vorliegt.

    Ob der Graph von $a \cdot \sin(b \cdot (x - c)) + d$ gestaucht oder gestreckt ist, erkennst du am Wert der Parameter $a$ und $b$.
    Es gilt:

    • für $\vert a \vert \gt 1$ und $\vert b \vert \lt 1$ wird der Graph gestreckt.
    • für $\vert a \vert \lt 1$ und $\vert b \vert \gt 1$ wird der Graph gestaucht.

    Lösung

    Die vier Parameter der allgemeinen Sinusfunktion $a \cdot \sin(b \cdot (x - c)) + d$ wirken sich folgendermaßen auf den Graphen der Funktion aus:

    • Parameter $c$ bewirkt eine Verschiebung in $x$-Richtung, also nach rechts oder links. Das ist hier bei $\sin(x - 5)$ und $\sin(x + 0,7)$ der Fall.
    • Parameter $d$ bewirkt eine Verschiebung in $y$-Richtung, also nach oben oder unten. Das findest du bei $\sin(x) - 5$ und $\sin(x) + \frac{1}{3}$.
    • Parameter $a$ streckt oder staucht den Funktionsgraphen entlang der $y$-Achse. Dabei gilt: für $\vert a \vert \lt 1$ wird der Graph gestaucht, für $\vert a \vert \gt 1$ gestreckt. Eine Streckung finden wir also bei $4 \cdot \sin(x)$ und $1,5 \cdot \sin(x)$, und eine Stauchung bei $\frac{1}{3} \cdot \sin(x)$.
    • Parameter $b$ streckt oder staucht den Graphen entlang der $x$-Achse. Dabei gilt: für $\vert b \vert \lt 1$ wird der Graph gestreckt, für $\vert b \vert \gt 1$ gestaucht. Eine Streckung finden wir also bei $\sin(0,6 \cdot x)$ und eine Stauchung bei $\sin(3x)$.
  • Beschreibe, wie der Graph der gegebenen Funktionen aus dem Graph von $\text{sin}(x)$ hervorgeht.

    Tipps

    Überlege dir zunächst, welche Verschiebung vorliegt.

    Betrachte dann, ob der Graph gestaucht oder gestreckt ist. Das erkennst du an den Parametern $a$ und $b$ der allgemeinen Sinusfunktion $a \cdot \sin(b \cdot (x - c)) + d$.

    Lösung

    Die allgemeine Sinusfunktion $a \cdot \sin(b \cdot (x - c)) + d$ enthält vier Parameter.

    • Parameter $c$ bewirkt eine Verschiebung in $x$-Richtung, also nach rechts oder links.
    • Parameter $d$ bewirkt eine Verschiebung in $y$-Richtung, also nach oben oder unten.
    • Parameter $a$ streckt oder staucht den Funktionsgraphen entlang der $y$-Achse. Dabei gilt: für $\vert a \vert \lt 1$ wird der Graph gestaucht, für $\vert a \vert \gt 1$ gestreckt.
    • Parameter $b$ streckt oder staucht den Graphen entlang der $x$-Achse. Dabei gilt: für $\vert b \vert \lt 1$ wird der Graph gestreckt, für $\vert b \vert \gt 1$ gestaucht.

    Betrachten wir die Beispiele:

    • Bei $2 \cdot \sin(x) - 3$ wird der Graph in $y$-Richtung gestreckt, da $a = 2$ ist. Zudem wird er um $d = -3$ in $y$-Richtung, also nach unten, verschoben.
    • Bei $\sin(3 \cdot (x - 2))$ wird der Graph in $x$-Richtung gestaucht, da $b = 3$ ist. Zudem wird er um $c = 2$ in $x$-Richtung, also nach rechts, verschoben.
    • Bei $\sin(x + 2) - \frac{4}{3}$ wird der Graph um $c = -2$ in $x$-Richtung, also nach links, und um $d = -\frac{4}{3}$ in $y$-Richtung, also nach unten, verschoben.
    • Bei $\frac{3}{7} \cdot \sin(x + 3)$ wird der Graph in $y$-Richtung gestaucht, da $a = \frac{3}{7}$ ist. Zudem wird er um $c = -3$ in x-Richtung, also nach links, verschoben.
  • Gib an, wie sich die Werte der Parameter im Funktionsterm auf den Graphen im Vergleich zu $\text{sin}(x)$ auswirken.

    Tipps

    Die Parameter $a$ und $d$ beeinflussen die Funktion in $y$-Richtung, während $b$ und $c$ in $x$-Richtung wirken.

    Ob der Graph von $a \cdot \sin(b \cdot (x - c)) + d$ gestaucht oder gestreckt ist, erkennst du am Wert der Parameter $a$ und $b$.
    Es gilt:

    • für $\vert a \vert \gt 1$ und $\vert b \vert \lt 1$ wird der Graph gestreckt.
    • für $\vert a \vert \lt 1$ und $\vert b \vert \gt 1$ wird der Graph gestaucht.

    Lösung

    Die allgemeine Sinusfunktion $a \cdot \sin(b \cdot (x - c)) + d$ enthält vier Parameter.

    • Parameter $c$ bewirkt eine Verschiebung in $x$-Richtung, also nach rechts oder links.
    • Parameter $d$ bewirkt eine Verschiebung in $y$-Richtung, also nach oben oder unten.
    • Parameter $a$ streckt oder staucht den Funktionsgraphen entlang der $y$-Achse. Dabei gilt: für $\vert a \vert \lt 1$ wird der Graph gestaucht, für $\vert a \vert \gt 1$ gestreckt.
    • Parameter $b$ streckt oder staucht den Graphen entlang der $x$-Achse. Dabei gilt: für $\vert b \vert \lt 1$ wird der Graph gestreckt, für $\vert b \vert \gt 1$ gestaucht.

    Hier gilt demnach:

    • Bei $~\sin(x - 1)~$ ist der Parameter $c = 1$. Daher ist der Graph um $1$ nach rechts, also in $x$-Richtung, verschoben.
    • Bei $~2 \cdot \sin(x)~$ ist der Parameter $a = 2$. Daher ist der Graph in $y$-Richtung gestreckt.
    • Bei $~\sin(x) - 1~$ ist der Parameter $d = -1$. Daher ist der Graph um $1$ nach unten, also in $y$-Richtung verschoben.
    • Bei $~\sin(0,5 \cdot x)~$ ist der Parameter $b = 0,5$. Daher ist der Graph in $x$-Richtung gestreckt.
  • Leite aus den Funktionstermen $f_{1}(x)$ und $f_{2}(x)$ die Eigenschaften ihrer Funktionsgraphen ab.

    Tipps

    Um die Parameter bei der allgemeinen Sinusfunktion korrekt ablesen zu können, muss der Funktionsterm die Form $a \cdot \sin(b \cdot (x - c)) + d$ haben.

    Achte dabei besonders auf die Klammer und das Minuszeichen bei $\sin(b \cdot (x - c))$.

    Lösung

    Die allgemeine Sinusfunktion $a \cdot \sin(b \cdot (x - c)) + d$ enthält vier Parameter.

    • Parameter $c$ bewirkt eine Verschiebung in $x$-Richtung, also nach rechts oder links.
    • Parameter $d$ bewirkt eine Verschiebung in $y$-Richtung, also nach oben oder unten.
    • Parameter $a$ streckt oder staucht den Funktionsgraphen entlang der $y$-Achse. Daher bestimmt er den Ausschlag der Sinuskurve, die sogenannte Amplitude.
    • Parameter $b$ streckt oder staucht den Graphen entlang der $x$-Achse. Daher ist er maßgeblich für die Dauer einer Schwingung, die solgenannte Periodenlänge.

    Bertachten wir nun $f_1(x) = 5 \cdot \sin(x - 4) + 2,5 \quad$ und $\quad f_2(x) = \sin(2x - 4)$.
    Wir bringen zunächst den Funktionsterme von $f_2(x)$ in die Form der allgemeinen Sinusfunktion, damit wir die Parameter korrekt ablesen können:
    $f_2(x) = \sin(2x - 4) = \sin(2 \cdot (x - 2))$

    Korrekte Aussagen:

    • Der Graph von $f_1(x)$ hat die Amplitude $5$: Wir haben $a = 5$ und damit eine Streckung in $y$-Richtung.
    • Beim Graphen von $f_2(x)$ liegen eine Stauchung und eine Verschiebung, beide in $x$-Richtung, vor: Wir haben wegen $b = 2$ eine Stauchung in $x$-Richtung und wegen $c = 2$ eine Verschiebung, ebenfalls in $x$-Richtung.
    • Bei $f_2(x)$ entspricht die Periodenlänge genau der Hälfte der Periode von $\sin(x)$: Wegen $b = 2$ ist der Graph in $x$-Richtung genau auf die Hälfte gestaucht, damit halbiert sich auch die Periodenlänge.

    Falsche Aussagen:

    • Beide Graphen sind um $4$ nach rechts verschoben: Der Graph von $f_1(x)$ ist wegen $c = 4$ um $4$ nach rechts geschoben, bei $f_2(x)$ ergibt sich nach der Umformung $c = 2$, also eine Verschiebung um $2$ nach rechts.
    • Der Graph von $f_1(x)$ ist um $4$ nach links und $2,5$ nach oben verschoben: Der Graph von $f_1(x)$ ist wegen $c = 4$ um $4$ nach rechts, nicht nach links, geschoben. In $y$-Richtung ergibt sich wegen $d = 2,5$ eine Verschiebung um $2,5$ nach oben.
    • Der Graph von $f_2(x)$ ist um $4$ nach unten verschoben: Bei $f_2(x)$ gibt es keine Verschiebung in $y$-Richtung. Der Graph ist, wie am umgeformten Term $\sin(2 \cdot (x - 2))$ zu erkennen, um $c = 2$ nach rechts verschoben und um den Faktor $b = 2$ in $x$-Richtung gestaucht.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

4.000

sofaheld-Level

6.574

vorgefertigte
Vokabeln

10.231

Lernvideos

42.201

Übungen

37.298

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden