30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Die eulersche Zahl e

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Sei der Erste und gib eine Bewertung ab!

Die Autor*innen
Avatar
Team Digital
Die eulersche Zahl e
lernst du in der Oberstufe 7. Klasse - 8. Klasse

Grundlagen zum Thema Die eulersche Zahl e

Inhalt

Einführung: die eulersche Zahl e

Die eulersche Zahl $\mathrm{e}$ gehört zu den wichtigsten Konstanten in der Mathematik. Aber wer hat die eulersche Zahl entdeckt, was ist der Wert der eulerschen Zahl und woher kommt die eulersche Zahl $\mathrm{e}$? In diesem Text wird einfach erklärt, was die eulersche Zahl $\mathrm{e}$ ist und wie man sie herleiten kann.

Eulersche Zahl e – Definition

Die eulersche Zahl $\mathrm{e}$ hat ihren Namen von einem der wichtigsten Mathematiker der Geschichte: Leonhard Euler. Die Zahl wurde nach ihm benannt, da er maßgeblich an deren Erforschung beteiligt war. Aber was ist die eulersche Zahl $\mathrm{e}$ überhaupt?

Es handelt sich bei der eulerschen Zahl $\mathrm{e}$ um eine Konstante. Sie ist eine irrationale Zahl, lässt sich also nicht als Bruch schreiben. Als Dezimalzahl lässt sie sich nur näherungsweise darstellen, da $\mathrm{e}$ eine nicht abbrechende, nicht periodische Dezimalzahl ist. Die eulersche Zahl $\mathrm{e}$ hat also unendlich viele Nachkommastellen, die sich nicht nach einem vorhersagbaren Muster wiederholen. Die eulersche Zahl $\mathrm{e}$ hat ungefähr den Wert:

$\mathrm{e} \approx 2,718\,281\,828\,459…$

Die Konstante $\mathrm{e}$ wird für die Beschreibung von exponentiellen Wachstumsprozessen benutzt.

Wie kommt man auf die eulersche Zahl e?

Schauen wir uns für die Herleitung der eulerschen Zahl $\mathrm{e}$ ein Beispiel an. Auf einem Konto befindet sich ein Euro als Startguthaben. Die Bank zahlt darauf jährlich $100\,\%$ Zinsen. Das bedeutet, am Ende des Jahres zahlt sie einen Euro Zinsen. Auf dem Konto befinden sich nun zwei Euro. Mit der Formel für den Zinseszins können wir das so schreiben:

$\left(1 + 1\right)^{1} = 2$

Nun gibt es ein weiteres Angebot, das jedes halbe Jahr $50\,\%$ Zinsen verspricht. Bei einem Euro Startguthaben wären nach sechs Monaten $1,50$ Euro auf dem Konto und nach einem Jahr bereits $2,25$ Euro, da nun die Zinsen zusätzlich verzinst werden. Mit der Formel für den Zinseszins können wir das so schreiben:

$\left(1 + \dfrac{1}{2}\right)^{2} = 2,25$

Betrachten wir nun das Angebot, bei dem viermal im Jahr $25\,\%$ Zinsen gezahlt werden. Setzen wir die Werte in die Formel für den Zinseszins ein, so erhalten wir:

$\left(1 + \dfrac{1}{4}\right)^{4} \approx 2,44$

Ein weiteres Angebot wäre es, jeden Monat $\frac{1}{12}$ des Guthabens als Zinsen zu erhalten. Die eingesetzten Werte ergeben nach einem Jahr folgenden Betrag auf dem Konto:

$\left(1 + \dfrac{1}{12}\right)^{12} \approx 2,61$

Die allgemeine verwendete Formel lautet:

$\boxed{\left(1 + \dfrac{1}{n}\right)^{n}}$

Setzen wir nun für $n$ die Anzahl der Wochen pro Jahr, also $52$, und in einer weiteren Formel die Anzahl der Tage im Jahr, also $365$, ein. Wir erhalten:

Bei wöchentlicher Verzinsung:

$\left(1 + \dfrac{1}{52}\right)^{52} \approx 2,69$

Bei täglicher Verzinsung:

$\left(1 + \dfrac{1}{365}\right)^{365} \approx 2,71$

Wir sehen: Je größer $n$ ist, umso größer ist auch das Ergebnis. Das Wachstum flacht jedoch ab und nähert sich einem bestimmten Wert. Um das zu überprüfen, schauen wir uns in der folgenden Tabelle an, welche Ergebnisse herauskommen, wenn wir die Zahlen $1\,000$, $10\,000$ und $100\,000$ einsetzen:

$n$ $\left(1+ \dfrac{1}{n}\right)^{n}$
$1\,000$ $2,716\,923\,…$
$10\,000$ $2,718\,145\,…$
$100\,000$ $2,718\,268\,…$

Wie viel Geld wäre am Ende des Jahres auf dem Konto, wenn wir in jedem einzelnen Moment Zinsen ausgezahlt bekommen würden? Diese Frage kann mit dem Grenzwert für $n$ gegen unendlich beantwortet werden.

$\boxed{\lim \limits_{n \to \infty} \left(1 + \dfrac{1}{n}\right)^{n}}$

Dieser Grenzwert ist nichts anderes als die eulersche Zahl $\mathrm{e}$:

$\lim \limits_{n \to \infty} \left(1 + \dfrac{1}{n}\right)^{n} = \mathrm{e} \left( \approx 2,718\,281\,828\,459… \right) $

Somit lässt sich die eulersche Zahl $\mathrm{e}$ aus diesem Grenzwert ableiten. Würden wir das Startguthaben von einem Euro in jedem Moment verzinsen, so hätten wir am Ende des Jahres genau $\mathrm{e}$ Euro auf dem Konto.

Zusammenfassung: die eulersche Zahl e

Die folgenden Stichpunkte fassen noch einmal das Wichtigste über die eulersche Zahl $\mathrm{e}$ zusammen:

  • Die eulersche Zahl $\mathrm{e}$ ist eine nicht abbrechende, nicht periodische Dezimalzahl und hat ungefähr den Wert: $\mathrm{e} \approx 2,718\,281\,828\,459…$.
  • Die Konstante $\mathrm{e}$ wird für die Beschreibung von exponentiellen Wachstumsprozessen benutzt.
  • Die eulersche Zahl $\mathrm{e}$ entspricht dem Grenzwert der Folge:
    $\lim \limits_{n \to \infty} \left(1 + \dfrac{1}{n}\right)^{n} = \mathrm{e} \left( \approx 2,718\,281\,828\,459… \right) $.

Wofür brauchen wir die eulersche Zahl $\mathrm{e}$? Die eulersche Zahl $\mathrm{e}$ findet häufig Anwendung in der Mathematik und Physik. Sie ist die Basis der natürlichen Exponentialfunktion $f(x) = \mathrm{e}^{x}$. Diese Exponentialfunktion ist sowohl in der Mathematik als auch in der Physik von großer Bedeutung.

Zusätzlich zum Text und dem Video findest du hier bei sofatutor noch Übungen und Arbeitsblätter zum Thema Eulersche Zahl.

Transkript Die eulersche Zahl e

Die Kreiszahl Pi, die Quadratwurzel aus zwei und auch die Eulersche Zahl e, gehören zu den wichtigsten Konstanten der Mathematik. So wie die Zahl Pi, die das Verhältnis vom Umfang zum Durchmesser eines Kreises angibt, und die Wurzel aus zwei, die das Verhältnis der Diagonalen zur Kantenlänge eines Quadrates angibt, spielt auch e eine ganz besondere Rolle in der Mathematik. Aber welche eigentlich? In diesem Video wollen wir uns anschauen, was es mit diesem „e“ auf sich hat. Es ist vielleicht zuerst etwas gewöhnungsbedürftig. Aber wenn wir über Mathematik sprechen, ist mit dem Buchstaben e tatsächlich eine ganz besondere Zahl gemeint. Dass diese Zahl ausgerechnet „E“ heißt, geht auf einen der wichtigsten Mathematiker der Geschichte zurück: Leonhard Euler. Da Euler maßgeblich an der Erforschung der Zahl e und ihrer Eigenschaften beteiligt war, wird die Konstante bis heute als „eulersche Zahl“ bezeichnet. Und diese Zahl hat einige interessante Eigenschaften zu bieten: Zunächst einmal können wir festhalten, dass e – genauso wie Pi und die Quadratwurzel von Zwei – eine irrationale Zahl ist. In anderen Worten: Wir können diese Zahl nicht als Bruch darstellen. Und wenn wir sie als Dezimalzahl schreiben möchten, dann können wir das nur näherungsweise tun, da e unendlich viele Nachkommastellen besitzt, die sich nicht periodisch nach irgendeinem vorhersagbaren Muster wiederholen. e ist ungefähr gleich 2,718281 und so weiter. Doch woher kommt diese merkwürdige Zahl und was genau können wir uns darunter vorstellen? Einen geometrischen Zusammenhang wie bei Pi und Wurzel aus Zwei finden wir bei der eulerschen Zahl zunächst nicht. Tatsächlich ist e aber eine Konstante, die wir sehr gut zur Beschreibung von exponentiellen Wachstumsprozessen nutzen können. Um uns der Sache zu nähern, führen wir ein kleines Gedankenexperiment durch. Stell dir vor du hast einen Euro auf deinem Sparkonto. Ja schon klar, das ist nicht besonders viel. Aber dafür ist die Bank umso großzügiger und du erhältst für die Anlegedauer eines Jahres einhundert Prozent Zinsen! Nach einem Jahr würdest du also nochmal einen Euro als Zinsen auf dein Sparguthaben bekommen und hättest dann immerhin schon zwei Euro. Aber das reicht dir nicht, du handelst einen neuen Deal aus: Für deinen angelegten Euro zahlt dir die Bank nur noch fünfzig Prozent, also die Hälfte deines Guthabens als Zinsen. Dafür aber zweimal im Jahr. Zunächst könnte man meinen: In Summe sind das ja immer noch einhundert Prozent. An den Zinszahlungen sollte sich also nichts ändern. Aber das stimmt nicht, denn jetzt kommt der Effekt des Zinseszinses zum Tragen. Nach einem halben Jahr hättest du einen Euro fünfzig auf dem Sparbuch. Nachdem dieser nun größere Betrag dann nochmal mit fünfzig Prozent verzinst wird, wären es dann schon zwei Euro fünfundzwanzig. Kleine Wiederholung zur Zinsrechnung: Das Ganze können wir mit der Formel für den Zinseszins auch so aufschreiben. Aber da ist noch mehr drin! Wie wäre es denn, wenn du vier mal im Jahr fünfundzwanzig Prozent Zinsen – sprich ein Viertel deines Ersparten kriegen würdest? Nach vier Zinszahlungen kommst du so schon auf circa zwei Euro vierundvierzig. Mit dieser Vorgehensweise scheint es ja immer mehr zu werden! Wie sieht es denn aus, wenn wir jeden Monat ein Zwölftel unseres Guthabens als Zinsen erhalten? So kämen am Ende des Jahres schon rund zwei Euro und einundsechzig Cent zusammen! Die Frequenz können wir nun immer weiter erhöhen und zum Beispiel auch das resultierende Guthaben bei wöchentlicher oder sogar täglicher Verzinsung mit angepasstem Zinssatz berechnen. Du hast vielleicht auch schon das Muster erkannt, nach dem wir vorgehen müssen. Die allgemeine Formel, die wir zur Berechnung des angesparten Betrags brauchen, lautet „eins plus eins-geteilt-durch-n in Klammern hoch n“ Wir setzen für n zweiundfünfzig und dreihundertfünfundsechzig ein und sehen: Das resultierende Guthaben nach einem Jahr wächst immer weiter. Allerdings flacht das Wachstum ab und scheint sich bei einem gewissen Wert einzupendeln. Dieser Eindruck bestätigt sich, wenn wir uns in einer Wertetabelle die Resultate bei Verzinsungen in immer kürzeren Zeitabständen bei entsprechendem Zinssatz anschauen. Treiben wir das Ganze also mal auf die Spitze. Wie viel Geld würden wir erhalten, wenn wir in jeder Sekunde – oder noch besser: in jedem einzelnen Moment – Zinsen erhalten würden? Hinter dieser Frage verbirgt sich der Grenzwert unserer Formel für n gegen unendlich, also für immer größer werdende n. Und dieser Grenzwert ist tatsächlich nichts anderes als die eulersche Zahl e! Wenn wir unser Startkapital von einem Euro in jedem Moment verzinsen würden, hätten wir nach einem Jahr also genau „e Euro“ auf dem Konto. Wie wir uns die eulersche Zahl herleiten können, haben wir jetzt gesehen. Aber wozu können wir sie gebrauchen? Besonders interessant ist sie als Basis der natürlichen Exponentialfunktion „e hoch x“. Denn diese hat ein paar ganz besondere Eigenschaften und ist nicht nur in der Mathematik, sondern zum Beispiel auch in der Physik extrem wichtig! Aber das ist ein Thema für ein anderes Video. Dank der Vorarbeit von Mathematikern wie Euler, können wir uns aber schon mal merken, dass e einiges zu bieten hat! Die eulersche Zahl kann übrigens nicht nur mit dieser Formel, sondern auch so, so, oder auch so dargestellt werden. Oha, na da kann wohl noch fleißig weitergeforscht werden!

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

2.590

sofaheld-Level

5.907

vorgefertigte
Vokabeln

10.220

Lernvideos

42.293

Übungen

37.364

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden