30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Zahlenfolgen – Bildungsvorschriften

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 5.0 / 2 Bewertungen

Die Autor*innen
Avatar
Team Digital
Zahlenfolgen – Bildungsvorschriften
lernst du in der Oberstufe 7. Klasse - 8. Klasse

Grundlagen zum Thema Zahlenfolgen – Bildungsvorschriften

Inhalt

Zahlenfolgen – Definition

Eine Funktion heißt Folge, wenn ihr Definitionsbereich $\mathbb{D}$ eine Teilmenge der natürlichen Zahlen $\mathbb{N}_0$ ist. Der Wertebereich ist eine Teilmenge der reellen Zahlen $\mathbb{R}$.

Die Zahlenfolge besteht aus einer Menge einzelner Folgenglieder, welche in einer bestimmten Reihenfolge geordnet sind. Jedes einzelne Folgenglied besitzt demnach eine definierte Position, welche auch nicht vertauschbar ist. Da die Positionen $(0)$, $1$, $2$, $3$, $4$, ..., welche hier eine Teilmenge der natürlichen Zahlen $\mathbb{N}_0$ sind, den jeweiligen Folgengliedern, welche eine Teilmenge der reellen Zahlen $\mathbb{R}$ sind, zugeordnet werden, ist die Folge eine Funktion von $\mathbb{N}_0$ nach $\mathbb{R}$. Unterschieden wird hierbei zwischen endlichen und unendlichen Zahlenfolgen. Eine endliche Zahlenfolge besitzt endlich viele Folgenglieder. Bei einer unendlichen Zahlenfolge gibt es hingegen kein letztes Folgenglied oder es ist kein Ende bekannt.

Notation

Die Menge der Folgenglieder wird wie folgt aufgelistet:

  • $(a_0; a_1; a_2; a_3; a_4; ...)$, wenn $\mathbb{D}=\mathbb{N}_0$
  • $(a_1; a_2; a_3; a_4; a_5; ...)$, wenn $\mathbb{D}=\mathbb{N}$

Die einzelnen Glieder werden von runden Klammern umschlossen und werden mithilfe von Semikolons voneinander abgetrennt. Alternativ können statt der runden Klammern auch eckige Klammern die Folgenglieder umschließen. Optional kann mit $a_0$ oder mit $a_1$ begonnen werden. Je nachdem ist die Null ein Teil des Definitionsbereiches $(\mathbb{D}=\mathbb{N}_0)$ oder nicht $(\mathbb{D}=\mathbb{N})$. Im Folgenden ist die $0$ kein Teil des Definitionsbereiches, sodass die Folgenglieder mit $a_1$ beginnen.

Beispiel: die unendliche Folge der Primzahlen

  • $(2; 3; 5; 7; 11; 13; ...)$,
    wobei $a_1 = 2$, $a_2 = 3$, $a_3 = 5$, $a_4 =7$, ...
  • $\lbrace 2; 3; 5; 7; 11; 13; ...\rbrace$

Statt mit dem üblichen $f$ für eine Funktion wird eine Folge mit $a$ bezeichnet. Den natürlichen Zahlen $n$ wird dann ein $a(n)$ zugeordnet.

  • $a : n \mapsto a(n) $

Alternative Schreibweisen sind auch:

  • $a: n \mapsto a_n$
  • $(a_n)$: Die Klammern geben bereits an, dass diese Funktion eine Folge ist.
  • $(a_n)_{n \in \mathbb{N}}$: Es kann noch zusätzlich benannt werden, dass $n$ eine Teilmenge der natürlichen Zahlen ist.
  • $\lbrace a_n \rbrace$: Anstelle der runden Klammern können auch eckige Klammern gesetzt werden.

Zahlenfolgen – Beispiele:

  • Folge der Primzahlen:
    $(a_n)=(2; 3; 5; 7; 11; 13; ...)$
  • Folge der Quadratzahlen:
    $(a_n)=(1; 4; 9; 16; 25; ...)$
  • Folge der Kubikzahlen:
    $(a_n)=(1; 8; 27; 64; ...)$
  • Harmonische Folge:
    $(a_n)=(1; \frac12; \frac13; \frac14; \frac15; ...)$
  • Fibonacci-Folge:
    $(a_n)=(0; 1; 1; 2; 3; 5; 8, ...)$

Zahlenfolgen berechnen

Alle Zahlenfolgen lassen sich mittels Bildungsvorschriften beschreiben. Während sich manche nur verbal beschreiben lassen, lassen sich für einige Folgen auch Bildungsgesetze definieren, sodass jedes einzelne Folgenglied schnell zu bestimmen ist.

  • Folge der Quadratzahlen:
    $(a_n) = (n)^2$
    Wäre die $0$ ein Teil des Definitionsbereiches, so würde die Zählung bei $a_0$ beginnen. Das Bildungsgesetz würde dann $(a_n) = (n+1)^2$ lauten, da das Glied an der Stelle $a_0$ gleich der Quadratzahl von $1$ ist, also dem Folgeglied von $a_0$. Demnach wäre hier $a_0=(0+1)^2=1$.
  • Folge der Kubikzahlen:
    $(a_n) = (n)^3$
  • Harmonische Folge:
    $(a_n) = \dfrac{1}{n}$
  • Folge der Fibonacci-Zahlen:
    $(a_{n+2}) = a_n + a_{n+1}$
  • Die Folge der Primzahlen lässt sich ausschließlich verbal beschreiben. Ein Bildungsgesetz konnte bisher noch nicht bestimmt werden.

Unterscheiden lassen sich generell explizite und rekursive Bildungsgesetze.

Bei expliziten Definitionen ist die einzige Variable der Formel das $n$. Hier lässt sich ein beliebiges Glied der Folge ermitteln, ohne dass ein vorangegangenes Glied bekannt sein muss. Die Folge der Quadratzahlen, der Kubikzahlen und die harmonische Folge sind hierbei Beispiele für Folgen mit expliziten Bildungsvorschriften.

Um ein bestimmtes Glied einer Folge zu bestimmen, bei der die Definition rekursiv ist, muss hingegen mindestens ein Glied der Folge bereits bekannt sein. Meist handelt es sich um das vorangegangene Glied. Manchmal ist aber auch die Kenntnis über das erste Glied eine Voraussetzung zur Bestimmung eines bestimmten Folgengliedes.

Weiterführende Anmerkungen

Wurden in Mathe Zahlenfolgen ausreichend behandelt, so folgen anschließend die Reihen. Diese sind definiert als Addition der einzelnen Glieder einer bestimmten Folge. Die Reihe, die aus einer Folge $(a_n)$ resultiert, ist die Reihe:
$s_n = \sum_{i=1}^{n} a_i$
Vom ersten Folgenglied bis zum $n$-ten Folgenglied werden alle einzelnen Glieder addiert.
Sei beispielsweise $(a_n)= (1; 2; 3; 4; 5; ...)$, ist die zugehörige Reihe:
$s_n = 1 + 2 + 3 +4 +5 + ...$

Zusätzlich zum Text und dem Video findest du hier bei sofatutor noch Übungen und Arbeitsblätter zum Thema Zahlenfolgen.

Transkript Zahlenfolgen – Bildungsvorschriften

Fällt dir etwas auf, das die Dinge die du hier siehst alle gemeinsam haben könnten? Man kann es sicherlich nicht auf den ersten Blick erkennen, aber dem Aufbau all dieser Lebewesen liegt ein mathematisches Muster zugrunde. Genauer gesagt basiert ihre Struktur gewissermaßen auf der berühmten Fibonacci-Folge. Um das etwas besser verstehen zu können, beschäftigen wir uns in diesem Video mit „Zahlenfolgen und ihren Bildungsvorschriften“. Zuerst ein paar Grundlagen: „Zahlenfolgen“ sind – wie der Name schon sagt – Abfolgen von Zahlen. Das kann zum Beispiel so aussehen, oder so, oder – im Fall der bereits erwähnten Fibonacci-Folge – so. Um den Aufbau einer Folge ganz allgemein zu beschreiben, nutzt man meist die „Variable a“ und den „Index n“. Man kann aber natürlich auch eine beliebige andere Variable verwenden. Das gilt auch für den „Index n“ für den manchmal auch ein „i“ geschrieben wird. Der Index wird etwas tiefer gestellt angehängt und ist dafür da, die einzelnen Folgenglieder zu unterscheiden. Er startet bei Eins und nummeriert die Folgenglieder – gibt also an, um das wievielte Folgenglied es sich handelt. „N“ durchläuft somit die natürlichen Zahlen. Eine Zahlenfolge hat allerdings meistens nicht nur eine, sondern gleich mehrere Darstellungsweisen beziehungsweise Bildungsvorschriften! Das schauen wir uns jetzt mal genauer an. Und zwar erstmal an einem ganz einfachen Beispiel. Der Folge der natürlichen Zahlen. Also eins, zwei, drei, vier und so weiter. Um vom ersten Folgenglied auf das zweite zu kommen, müssen wir „plus eins“ rechnen. Und das gilt auch für die übrigen Folgenglieder. Und schon haben wir die erste Bildungsvorschrift für unsere Zahlenfolge gefunden. „a-n-plus-eins“ ist hier das Folgenglied, das wir bestimmen wollen, wozu wir den Vorgänger „a-n“ um eins erhöhen. Immer dann, wenn wir eine Struktur festhalten können, die angibt, wie man von einem Folgenglied auf das nächste Folgenglied schließen kann, sprechen wir von einer rekursiven Bildungsvorschrift der Folge. Die kann im Allgemeinen natürlich noch komplexer werden als in diesem einfachen Fall. Sie muss aber auf jeden Fall für die ganze Folge, sprich jedes beliebige Folgenglied und seinen Nachfolger funktionieren. Eine kleine, aber wichtige Information fehlt jetzt aber noch in unserer rekursiven Bildungsvorschrift. Das erste Folgenglied könnte so nämlich noch jede beliebige reelle Zahl sein. Erst, wenn wir „a-eins“ angegeben haben, ist unsere Zahlenfolge durch die rekursive Bildungsvorschrift eindeutig bestimmt und entspricht jetzt – so wie wir das haben wollen – den natürlichen Zahlen. Eine Alternative zur rekursiven Darstellung von Zahlenfolgen, ist die explizite Darstellungsform. Die ist bei unserem Einführungsbeispiel sogar noch einleuchtender. Das n-te Glied dieser Zahlenfolge ist einfach gleich n. Sprich, das erste Folgenglied ist gleich eins, das fünfte Folgenglied ist gleich fünf, und so weiter und so fort. Im Gegensatz zur rekursiven Formel, bei der wir ein Folgenglied bestimmen, indem wir den Vorgänger nach der Bildungsvorschrift modifizieren, können wir bei der expliziten Bildungsvorschrift ein Folgenglied berechnen, ohne dass wir den Vorgänger kennen müssen. Das ist vor allem dann von Vorteil, wenn wir zum Beispiel das hundertste Folgenglied einer Zahlenfolge bestimmen wollen und nicht von der geduldigen Sorte sind. Jetzt zu einem schon etwas anspruchsvollerem Beispiel: Der Zahlenfolge der Quadratzahlen. Hier ist es zunächst erst einmal leichter, die explizite Bildungsvorschrift aufzustellen. Sie lautet? Richtig, das n-te Folgenglied ist gleich „n zum Quadrat“. Das vierte Folgenglied ist zum Beispiel vier zum Quadrat, also sechzehn. Das funktioniert schonmal. Egal, welche natürliche Zahl wir für n einsetzen. Die rekursive Darstellung finden wir aber nicht ganz so leicht. Die Frage, die sich dahinter verbirgt, ist: Welchen Zusammenhang gibt es zwischen einem Folgenglied und seinem Vorgänger? Wir wollen eine Bildungsvorschrift für „a-n-plus-eins“ konstruieren. Dafür nutzen wir die Informationen unserer expliziten Formel. Wir wissen schon, dass „a-n“ gleich „n hoch zwei ist“ und n eine natürliche Zahl ist. Wir müssen daher einfach nur den Index unseres Folgengliedes quadrieren. „a-n-plus-eins“ muss also „n plus eins in Klammern zum Quadrat“ sein. Diesen Term können wir jetzt mit der ersten binomischen Formel umformen. Und dann müssen wir einmal genau hinschauen: Der erste Summand, den wir so erhalten, ist ja nichts anderes als die explizite Darstellung des Vorgängers „a-n“. Wir können „n Quadrat“ also mit „a-n“ ersetzen und schon haben wir den Zusammenhang zwischen Folgenglied und Vorgänger hergestellt. Um zu einer gegebenen Quadratzahl die Nächstgrößere zu erhalten, müssen wir „zwei n plus eins“ addieren. Das ist dann immer eine ungerade Zahl, die von mal zu mal um zwei größer wird. Ein interessanter Zusammenhang, der da durch die rekursive Darstellung ans Tageslicht gekommen ist! Du kannst die Formel ja mal überprüfen, indem du sie für konkrete Folgenglieder anwendest. Es gibt allerdings auch Folgen, für die wir nur eine explizite, nur eine rekursive, oder sogar keine der beiden Darstellungsformen kennen. Das berühmteste Beispiel hierfür ist die Zahlenfolge der Primzahlen. Bisher ist es niemandem gelungen, für diese Folge eine rekursive oder explizite Bildungsvorschrift zu finden und es steht die Vermutung im Raum, dass es die auch gar nicht gibt. Auf der Tatsache, dass uns weder eine explizite noch eine rekursive Bildungsvorschrift für Primzahlen bekannt ist, basieren übrigens wichtige Verschlüsselungstechniken und somit unsere Sicherheit beim Surfen im Internet! Darüber hinaus gibt es auch Zahlenfolgen, bei denen die Bildungsvorschriften dann auch mal etwas komplizierter werden können. So ist es zum Beispiel bei der eingangs erwähnten Fibonacci-Folge. Hier ist sie nochmal. Sie ist so konstruiert, dass man immer zwei aufeinanderfolgende Glieder addieren muss, um das nächste Folgenglied zu bestimmen. Die ersten beiden Folgenglieder sind als Einsen definiert und dann macht sich der Algorithmus an die Arbeit! Das dritte Folgenglied „zwei“ ergibt sich, wenn wir die ersten beiden Glieder addieren. Eins plus zwei ist dann drei, zwei plus drei fünf, drei plus fünf acht, und so weiter. Die rekursive Bildungsvorschrift ist also erstmal intuitiv und nicht allzu schwer nachzuvollziehen. Aber was ist, wenn wir jetzt das fünfzigste Folgenglied der Fibonacci-Folge bestimmen wollen? Mit der rekursiven Formel bedeutet das ziemlich viel Rechenarbeit. Dafür wäre es praktisch, wenn wir eine explizite Formel zur Hand hätten! Und die gibt es tatsächlich! Hier siehst du sie. Wie sie zustande kommt, kannst du in einem anderen Video nachschauen. Das ist – genauso wie die Formel selbst – etwas komplizierter. Das Faszinierende ist: Diese komische Formel funktioniert für jedes Glied der Fibonacci-Folge und das Ergebnis ist tatsächlich immer eine natürliche Zahl. Wenn du fit im Umgang mit Wurzeln und Potenzen bist, kannst du es ja mal für die ersten Folgenglieder ausprobieren. Wir fassen nochmal kurz zusammen: Zahlenfolgen – wie die, die du in diesem Video gesehen hast – können grundsätzlich rekursiv oder explizit dargestellt werden. Während eine rekursive Bildungsvorschrift immer einen Zusammenhang zwischen Folgenglied und Vorgänger herstellt, gibt eine explizite Bildungsvorschrift an, wie man ein Folgenglied berechnen kann, ohne auf den Vorgänger zurückgreifen zu müssen. Je nach Kontext kann mal die eine und mal die andere Darstellungsweise vorteilhaft sein. Außerdem gibt es auch Folgen, zu denen wir die Bildungsvorschriften gar nicht kennen. Wenn wir allerdings das Muster einer Folge entschlüsselt haben, kann uns das sehr interessante Erkenntnisse liefern. Wie zum Beispiel im Fall der Fibonacci-Folge. Die ist – wie du hier nochmal sehen kannst – ein wichtiger Schlüssel für den Bauplan der Natur! Faszinierend!

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

4.009

sofaheld-Level

6.574

vorgefertigte
Vokabeln

10.231

Lernvideos

42.207

Übungen

37.304

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden