Vierfeldertafel – Einführung

4.400
sofaheld-Level
6.572
vorgefertigte
Vokabeln
8.830
Lernvideos
38.416
Übungen
34.552
Arbeitsblätter
24h
Hilfe von Lehrer*
innen

Grundlagen zum Thema Vierfeldertafel – Einführung
Die Vierfeldertafel
Hast du schon einmal von der Vierfeldertafel gehört? Das ist ein mathematisches Werkzeug, mit dem man zufällige Ereignisse oder Stichproben in einen Zusammenhang bringen kann. Wir wollen uns das im Folgenden etwas genauer anschauen.
Vierfeldertafel – Erklärung
Wir können mithilfe einer Vierfeldertafel verschiedene Größen betrachten: absolute Häufigkeiten, relative Häufigkeiten und Wahrscheinlichkeiten. Der grundsätzliche Aufbau ist dabei immer gleich und sieht wie folgt aus:
Es handelt sich um eine Tabelle mit vier Zeilen und vier Spalten. In den äußeren Feldern stehen zunächst die Ereignisse $\text{A}$ und $\text{B}$ sowie ihre Gegenereignisse $\overline{\text{A}}$ und $\overline{\text{B}}$. In der Mitte befinden sich die vier Felder, in denen sich die Wahrscheinlichkeiten oder Häufigkeiten ihrer Schnittmengen befinden. Weil das alles etwas abstrakt klingt, wollen wir uns ein einfaches Beispiel anschauen.
Vierfeldertafel – Beispiel
Wir betrachten einen Beutel, in dem sich verschiedene Formen aus Holz in verschiedenen Farben befinden. Es gibt Kugeln, Zylinder und Würfel. Außerdem gibt es diese Formen alle in Blau und Rot.
Wir wollen zunächst eine Vierfeldertafel mit absoluten Häufigkeiten zeichnen. Dazu müssen wir im ersten Schritt definieren, welche Ereignisse $\text{A}$ und $\text{B}$ wir betrachten wollen. In diesem Beispiel wählen wir:
$\text{A} = \text{„Das Objekt ist eine Kugel.“}$
$\text{B} = \text{„Das Objekt ist blau.“}$
Damit ergeben sich automatisch die Gegenereignisse:
$\overline{\text{A}} = \text{„Das Objekt ist keine Kugel.“}$
$\overline{\text{B}} = \text{„Das Objekt ist nicht blau.“}$
Nehmen wir an, der Beutel enthält die folgenden Objekte: $20$ rote Kugeln und $10$ blaue Kugeln, $10$ rote Zylinder und $20$ blaue Zylinder sowie $20$ rote Würfel und $20$ blaue Würfel.
Vierfeldertafel absolute Häufigkeit
Tragen wir die konkreten Zahlen ein, mit denen Objekte, die zu Ereignis $A$ und $B$ gehören, in dem Beutel auftreten so erhalten wir folgende Vierfeldertafel mit absoluten Häufigkeiten.
Die Schnittmenge aus $\text{A}$ und $\text{B}$ sind alle Objekte, die eine Kugel und blau sind – es gibt 10 solche Objekte. Die Schnittmenge von $\text{A}$ und $\overline{\text{B}}$ sind alle Objekte, die zwar eine Kugel, aber nicht blau sind. Das sind gerade die $20$ roten Kugeln. In der dritten Zeile unter $\text{A}$ steht die Anzahl aller Objekte, die zu $\text{A}$ gehören. Das ist die Gesamtzahl von Kugeln, also $30$. In der dritten Zeile unter $\overline{\text{A}}$ steht die Gesamtzahl aller Objekte, die nicht zu $\text{A}$ gehören, die also keine Kugeln sind. Das sind in diesem Beispiel $70$. Zählt man alle Objekte, die Kugeln sind, mit allen Objekten, die keine Kugeln sind, zusammen, erhält man die Gesamtanzahl aller Objekte im Beutel. Das sind $100$. Die Gesamtzahl kann man auch berechnen, indem man alle Objekte, die blau sind, mit denen zusammenzählt, die nicht blau sind.
Vierfeldertafel relative Häufigkeit
Wir können für die Vierfeldertafel auch die relativen Häufigkeiten berechnen. Dazu dividieren wir den Wert in jedem Feld einfach durch die Gesamtzahl, hier $100$. Das Ergebnis sieht dann so aus:
Vierfeldertafel Wahrscheinlichkeit
Wir können auch die Wahrscheinlichkeiten der einzelnen Ereignisse und der Schnittmengen in der Vierfeldertafel notieren. Allgemein sieht das so aus:
Fasst man alle einzelnen Wahrscheinlichkeiten zusammen, ergibt sich die Wahrscheinlichkeit $1$. In unserem Beispiel des Ziehens der verschiedenen Objekte aus dem Beutel können wir die Wahrscheinlichkeiten mit den relativen Häufigkeiten gleichsetzen. Das geht im Allgemeinen allerdings nicht! Daher muss man an dieser Stelle vorsichtig sein.
Häufig gestellte Fragen zum Thema Vierfeldertafel
Vierfeldertafel – Einführung Übung
-
Bestimme die absoluten Häufigkeiten der Ereignisse.
TippsIm Inneren der Vierfeldertafel stehen jeweils die Und-Verknüpfungen der beiden Ereignisse. Das heißt, in der zweiten Spalte und zweiten Zeile steht die Häufigkeit für $H \cap S$.
Berechne die Summe von zwei benachbarten Zellen, um die letzte Spalte zu erhalten. Die Summe von zwei Zellen, die untereinander stehen, geben die letzte Zeile.
LösungIn den inneren vier Zellen der Vierfeldertafel stehen die Und-Verknüpfungen der beiden Ereignisse. Das heißt, $87$ ist die Anzahl der Singlehaushalte mit Hund ($H \cap S$). Wir wissen, dass es insgesamt $312$ Singlehaushalte gibt. Wenn $87$ davon mit Hund sind, müssen $312 - 87 = 225$ davon ohne Hund sein. Das bedeutet, in die Zelle für $\bar{H} \cap S$ tragen wir $225$ ein.
Auf die gleiche Weise rechnen wir die restlichen freien Zellen aus. Die Grundmenge beträgt $1000$. Da es $312$ Singlehaushalte gibt, erhalten wir $1000 - 312 = 688$ Mehrpersonenhaushalte.
Von den $688$ Mehrpersonenhaushalten sind $551$ ohne Hund. Damit gibt es $688 - 551 = 137$ Mehrpersonenhaushalte mit Hund.
Als Letztes berechnen wir die Gesamtanzahl der Haushalte mit Hund, indem wir $1000 - 776 = 224$ rechnen.
Alternativ können wir hier auch die Spalte $H$ summieren, um auf die Gesamtanzahl der Haushalte mit Hund zu kommen: $87 + 137 = 224$.
-
Berechne die relativen Häufigkeiten der Ereignisse.
TippsBerechne die fehlenden relativen Häufigkeiten der Und-Verknüpfungen, indem du die gegebenen relativen Häufigkeiten von dem Gesamten abziehst.
Beispiel: Wir haben insgesamt $45\ \%$ Schulen mit Katze ($K$) und $12\ \%$ Grundschulen mit Katze ($G \cap K$), dann müssen wir
$45\ \% - 12\ \% = 33\ \%$
weiterführende Schulen mit Katze ($\bar{G} \cap K$) haben.
In der letzten Spalte und letzten Zeile steht die Grundmenge. Das ist die Gesamthäufigkeit aller Merkmale, die betrachtet werden. In einer Vierfeldertafel mit relativen Häufigkeiten steht an dieser Stelle eine $1$. Das musst du noch als Prozentzahl angeben.
LösungUm die Vierfeldertafel mit relativen Häufigkeiten bzw. Wahrscheinlichkeiten auszufüllen, müssen wir die absoluten Häufigkeiten durch die Grundmenge teilen. Wenn wir in der Tabelle pro Zeile oder Spalte aber schon zwei Informationen gegeben haben, können wir die dritte ausrechnen ohne die Division durch die Grundmenge zu berechnen.
In der zweiten Zeile haben wir die relative Gesamthäufigkeit von Ereignis $S$ gegeben und die relative Häufigkeit von der Und-Verknüpfung $\bar{H} \cap S$. Um die Und-Verknüpfung $H \cap S$ zu bekommen, rechnen wir
$31{,}2\ \% - 22{,}5\ \% = 8{,}7\ \%$.
Das heißt, in die erste leere Zelle kommt $8{,}7\ \%$.
Wir wissen außerdem, dass die Zelle in der letzten Zeile und letzte Spalte immer die Grundmenge durch die Grundmenge, also $1$ ist. Dort haben wir die Wahrscheinlichkeit $100\ \%$.
Damit können wir die weiteren leeren Zellen in der letzten Spalte und der letzten Zeile berechnen.
Für die Wahrscheinlichkeit von $\bar{H}$ erhalten wir:
$100\ \% - 22{,}4\ \% = 77{,}6\ \%$.
Und für die Wahrscheinlichkeit von $\bar{S}$ ergibt sich:
$100\ \% - 31{,}2\ \% = 68{,}8\ \%$.
Nun fehlt noch die Wahrscheinlichkeit für die Und-Verknüpfung $\bar{H} \cap \bar{S}$, die wir auf die gleiche Weise berechnen:
$68{,}8\ \% - 13{,}7\ \% = 55{,}1\ \%$.
Es besteht eine Wahrscheinlichkeit von $55{,}1\ \%$, dass gleichzeitig $\bar{H}$ und $\bar{S}$ eintreten.
-
Gib an, wie eine Vierfeldertafel aufgebaut ist.
TippsÜberlege, was ein Merkmal und was eine Ausprägung ist. Wie viele Merkmale muss es geben, um eine Vierfeldertafel aufstellen zu können?
Die Vierfeldertafel beinhaltet die Häufigkeiten der Und-Verknüpfungen und die Summen der Häufigkeiten. Wo müssen diese in der Tabelle jeweils stehen?
Bei relativen Häufigkeiten handelt es sich um Wahrscheinlichkeiten. Wenn ich insgesamt $5$ Bälle habe und genau $3$ davon rot sind, ist die Wahrscheinlichkeit einen roten Ball zu ziehen $\frac{3}{5}$. Hier wird die Anzahl der roten Bälle also durch die Gesamtanzahl bzw. die Grundmenge geteilt.
Auf gleiche Weise lassen sich die relativen Häufigkeiten in der Vierfeldertafel berechnen. Wie muss das aussehen?
LösungBei einer Vierfeldertafel haben wir immer zwei Merkmale mit jeweils zwei Ausprägungen.
$\rightarrow$ Vierfeldertafeln unterscheiden eine Grundmenge bezüglich zweier Merkmale mit jeweils zwei Ausprägungen. korrekt
$\rightarrow$ Vierfeldertafeln unterscheiden eine Grundmenge bezüglich eines Merkmals mit zwei Ausprägungen. falsch
Beispiel: Wir haben eine Menge von $20$ Kreisen ($K$) und Quadraten ($Q$), die jeweils rot ($r$) und blau ($b$) sein können. Das heißt, wir haben die zwei Merkmale Form und Farbe. Aus dieser Menge können wir verschiedene Informationen nehmen. So können wir zum Beispiel alle Kreise alleine betrachten, aber auch alle roten Formen. Genauso können wir auch die Und-Verknüpfungen betrachten, zum Beispiel alle roten Kreise oder alle blauen Quadrate.
Die Vierfeldertafel gibt hier die Häufigkeiten beider Merkmale mit den Verknüpfungen der Ausprägungen an. So könnte eine solche Vierfeldertafel aussehen:
$\begin{array}{c|c|c|c} & K & Q & \mathrm{gesamt} \\ & & & \\ \hline & & & \\ r & 5 & 8 & 13 \\ & & & \\ \hline & & & \\ b & 3 & 4 & 7 \\ & & & \\ \hline & & & \\ \mathrm{gesamt} & 8 & 12 & 20 \end{array}$
Wir können jetzt zum Beispiel aus der Vierfeldertafel ablesen, dass es $5$ rote Kreise gibt.
Im Inneren der Vierfeldertafel stehen immer die Und-Verknüpfungen der Ausprägungen und in der letzten Spalte und der letzten Zeile stehen dann jeweils die Summen der Häufigkeiten.
$\rightarrow$ In den vier inneren Zellen der Vierfeldertafel stehen die Häufigkeiten der Und-Verknüpfungen. korrekt
$\rightarrow$ In den vier inneren Zellen der Vierfeldertafel stehen jeweils die Summen der Häufigkeiten. falsch
Die relativen Häufigkeiten bzw. die Wahrscheinlichkeiten der einzelnen Ausprägungen erhalten wir, indem wir alle Zahlen durch die Grundmenge teilen.
$\rightarrow$ Um die relativen Häufigkeiten der inneren vier Zellen zu erhalten, müssen sie durch die Gesamthäufigkeit, die in der letzten Spalte bzw. letzten Zeile steht, geteilt werden. falsch
Beispiel: Bei dem oberen Beispiel sieht die Vierfeldertafel mit relativen Häufigkeiten folgendermaßen aus:
$\begin{array}{c|c|c|c} & K & Q & \mathrm{gesamt} \\ & & & \\ \hline & & & \\ r & \dfrac{5}{20} = 0{,}25 & \dfrac{8}{20} = 0{,}4 & \dfrac{13}{20} = 0{,}65 \\ & & & \\ \hline & & & \\ b & \dfrac{3}{20} = 0{,}15 & \dfrac{4}{20} = 0{,}2 & \dfrac{7}{20} = 0{,}35 \\ & & & \\ \hline & & & \\ \mathrm{gesamt} & \dfrac{8}{20} = 0{,}4 & \dfrac{12}{20} = 0{,}6 & \dfrac{20}{20} = 1 \end{array}$
-
Ermittle die absoluten Häufigkeiten in der Vierfeldertafel.
TippsDie Grundmenge ist die Summe aller Menschen mit und ohne Haustier. Sie ist außerdem die Summe aller Menschen unter und über $20$ Jahren.
Im Inneren der Vierfeldertafel stehen die Und-Verknüpfungen der Ausprägungen und in der letzten Spalte und letzten Zeile stehen die Summen der Häufigkeiten.
LösungDie Lücken der Vierfeldertafel können wir ganz einfach ausrechnen. Sobald in einer Zeile oder Spalte zwei Informationen gegeben sind, lässt sich die letzte Information berechnen.
In der zweiten Zeile der Tabelle sehen wir, dass insgesamt $96$ Menschen unter $20$ befragt worden sind. Davon haben $42$ ein Haustier. Also haben
$96 - 42 = 54$
Menschen unter $20$ kein Haustier.
In der nächsten Zeile fehlen $2$ Einträge. Hier können wir also nicht auf gleiche Weise rechnen. Zuerst müssen wir einen der leeren Zellen separat berechnen. Wir wissen, dass die Grundmenge $200$ ist und dass es insgesamt $96$ unter $20$ gibt. Der Rest
$200 - 96 = 104$
muss dann die Häufigkeit der Menschen über $20$ sein. Mit dieser Information können wir die Und-Verknüpfung
$H \cap \bar{A}$ berechnen. Von den $104$ Menschen über $20$ haben $63$ kein Haustier. Das heißt,$104 - 63 = 41$
der über $20$-Jährigen besitzen ein Haustier.
Und als Letztes bleibt die Häufigkeit aller Menschen mit einem Haustier. Das ist die Summe der Menschen unter und über $20$, die ein Haustier besitzen:
$42 + 41 = 83$.
Damit haben wir alle Zellen der Vierfeldertafel ausgefüllt:
$\begin{array}{c|c|c|c} & H & \bar{H} & \mathrm{gesamt} \\ & & & \\ \hline & & & \\ A & 42 & 54 & 96 \\ & & & \\ \hline & & & \\ \bar{A} & 41 & 63 & 104\\ & & & \\ \hline & & & \\ \mathrm{gesamt} & 83 & 117 & 200 \end{array}$
-
Benenne, was in den Zellen der Vierfeldertafel steht.
TippsUm das Innere der Vierfeldertafel zu bestimmen, musst du sowohl die Spalte als auch die Zeile betrachten.
Beispiel: In der Spalte mit der Beschriftung $H$ und Zeile mit der Beschriftung $S$ wird die Zelle mit ihrer Verknüfung, also $H \cap S$, ausgefüllt.
In der letzten Spalte und letzten Zeile steht immer die Grundmenge. Diese wird bezüglich der zwei Merkmale mit den zwei Ausprägungen betrachtet. Die Summe von $H$ und $\bar{H}$ muss ebenso wie die Summe von $S$ und $\bar{S}$ die Grundmenge ergeben.
LösungIn einer Vierfeldertafel werden zwei Merkmale mit jeweils zwei Ausprägungen mit ihren Häufigkeiten dargestellt. Dabei ist es wichtig, dass ein Merkmal mit ihren beiden Ausprägungen immer nebeneinander bzw. bei einer Spalte untereinander steht.
Damit bekommen wir zunächst die folgende Tabelle:
$\begin{array}{c|c|c|c} & H & \bar{H} & \\ & & & \\ \hline & & & \\ S & & & \\ & & & \\ \hline & & & \\ \bar{S} & & & \\ & & & \\ \hline & & & \\ & & & \end{array}$
In den inneren vier Zellen der Vierfeldertafel kommen dann die Und-Verknüpfungen der beiden Merkmale. Also:
$\begin{array}{c|c|c|c} & H & \bar{H} & \\ & & & \\ \hline & & & \\ S & H \cap S & \bar{H} \cap S & \\ & & & \\ \hline & & & \\ \bar{S} & H \cap \bar{S} & \bar{H} \cap \bar{S} & \\ & & & \\ \hline & & & \\ & & & \end{array}$
In die letzte Spalte und letzte Zeile tragen wir die Gesamthäufigkeiten der jeweiligen Merkmale an:
$\begin{array}{c|c|c|c} & H & \bar{H} & \mathrm{gesamt} \\ & & & \\ \hline & & & \\ S & H \cap S & \bar{H} \cap S & \mathrm{Häufigkeit\ von\ } S \\ & & & \\ \hline & & & \\ \bar{S} & H \cap \bar{S} & \bar{H} \cap \bar{S} & \mathrm{Häufigkeit\ von\ } \bar{S} \\ & & & \\ \hline & & & \\ \mathrm{gesamt} & \mathrm{Häufigkeit\ von\ } H & \mathrm{Häufigkeit\ von\ } \bar{H} & \mathrm{Grundmenge} \end{array}$
Das bedeutet, im Inneren der Tabelle stehen die Und-Verknüpfungen und in der letzten Zeile und der letzten Spalte stehen die Summen der Häufigkeiten.
-
Arbeite die relativen Häufigkeiten der Ereignisse aus dem Text heraus.
TippsIn welche Lücken müssen die gegebenen Zahlen eingetragen werden? Rechne diese in relative Häufigkeiten um und trage sie dann in die Tabelle ein.
Wenn eine Zeile oder eine Spalte nur noch eine freie Lücke hat, kannst du diese ausrechnen, indem du die anderen beiden Lücken entweder addierst oder voneinander abziehst. Die Addition von den inneren beiden benachbarten Lücken gibt die äußere Lücke.
Um die relative Häufigkeit von einem Bruch in eine Prozentzahl umzuwandeln, kannst du den Bruch als eine Division betrachten und diese Division durchführen.
Beispiel: Um den Bruch $\dfrac{2}{8}$ in eine Dezimalzahl umzuwandeln, rechnen wir:
$\begin{array}{ll} & \ \ \ \ 2 & : 8 = 0{,}25 \\ &\underline{-(0)} & \\ & \ \ \ \ \ 20 & \\ &\ \underline{ -(16)} & \\ &\ \ \ \ \ \ \ 40 & \\ &\ \ \ \underline{-(40)} & \\ &\ \ \ \ \ \ \ \ \ \ 0 & \end{array}$
LösungWir haben folgende Ereignisse:
$L:$ Es handelt sich um eine Lehrkraft.
$S:$ Es handelt sich um eine Schülerin oder ein Schüler.
$B:$ Ein Bild, das von den Schülerinnen und Schülern gemalt wurde, wird bevorzugt.
$\bar{B}:$ Eine schlichte Farbe wird bevorzugt.
Achtung: In diesem Beispiel heißen die Ereignisse $L$ und $S$. Wir hätten sie auch $L$ und $\bar{L}$ nennen können. Solange die beiden Ereignisse unabhängig voneinander sind, das heißt die Anzahl von $L$ und die Anzahl von $S$ gleich $800$ beträgt und es keine Person gibt, die sowohl Lehrkraft als auch Schülerin oder Schüler ist, können wir die Vierfeldertafel aufstellen wie gewohnt. Dies ist hier der Fall.
Wir wissen, dass es $800$ Schülerinnen, Schüler und Lehrkräfte gibt. Darunter sind $80$ Lehrkräfte. Das heißt, die relative Häufigkeit der Lehrkräfte beträgt
$\dfrac{80}{800} = 0{,}1 = 10\ \%$.
Von den $80$ Lehrkräften sind $16$ dafür, dass der Eingangsbereich in einer schlichten Farbe angemalt wird. Das ist die Und-Verknüpfung $L \cap \bar{B}$, denn es handelt sich um eine Lehrkraft und es wird eine schlichte Farbe bevorzugt. Diese absolute Häufigkeit rechnen wir in eine relative Häufigkeit um:
$\dfrac{16}{800} = \dfrac{2}{100} = 0{,}02 = 2\ \%$.
Außerdem wissen wir, dass $580$ Personen ein Bild bevorzugen, das von den Schülerinnen und Schülern gemalt wurde. Diese absolute Häufigkeit können wir auf gleiche Weise in eine relative Häufigkeit umwandeln:
$\dfrac{580}{800} = \dfrac{145}{200} = \dfrac{725}{1000} = 0{,}725 = 72{,}5\ \%$.
Hier haben wir den Bruch $\dfrac{580}{800}$ zuerst gekürzt, um es dann leichter auf den Nenner $1000$ zu erweitern, um dann den Bruch in eine Dezimalzahl umzuwandeln. Alternativ könntest du auch die schriftliche Division $580 : 800 = 0{,}725$ durchführen. Nun haben wir alle gegebenen Zahlen in relative Häufigkeiten umgewandelt. Diese können wir direkt in die Vierfeldertafel einsetzen:
$\begin{array}{c|c|c|c} & L & S & \mathrm{gesamt} \\ & & & \\ \hline & & & \\ B & & & 72{,}5\ \% \\ & & & \\ \hline & & & \\ \bar{B} & 2\ \% & & \\ & & & \\ \hline & & & \\ \mathrm{gesamt} & 10\ \% & & 100\ \% \end{array}$
Jetzt rechnen wir nach und nach die fehlenden Lücken aus. Immer wenn wir eine Zeile oder Spalte haben, in der zwei Informationen gegeben und eine Information fehlt, können wir diese durch Addition oder Subtraktion der anderen Werte berechnen.
Wenn $10\ \%$ der $800$ Menschen Lehrkräfte sind, müssen $100\ \% - 10\ \% = 90\ \%$ Schülerinnen und Schüler sein. Es bevorzugen $72{,}5\ \%$ der $800$ Menschen ein Bild, das von den Schülerinnen und Schülern gemalt wurde. Das bedeutet
$100\ \% - 72{,}5\ \% = 27{,}5\ \%$
bevorzugen eine schlichte Farbe. Von den Lehrkräften, die insgesamt $10\ \%$ der Gesamtanzahl der Menschen ausmachen, bevorzugen $2\ \%$ eine schlichte Farbe. Damit wollen die restlichen
$10\ \% - 2\ \% = 8\ \%$
ein Bild, das von den Schülerinnen und Schülern gemalt wurde. Beachte, dass es sich hier wieder um eine Und-Verknüpfung ($L \cap B$) handelt. Es gibt $72{,}5\ \%$ Menschen, die ein Bild der Schülerinnen und Schüler wollen, wovon $8\ \%$ Lehrkräfte sind. Das bedeutet, die restlichen
$72{,}5\ \% - 8\ \% = 64{,}5\ \%$
müssen Schülerinnen und Schüler sein. Diese Zahl können wir benutzen, um zu berechnen, wie viel Prozent der Schülerinnen und Schüler eine schlichte Farbe wollen:
$90\ \% - 64{,}5\ \% = 25{,}5\ \%$.
Das heißt, $25{,}5\ \%$ der $800$ Menschen sind Schülerinnen und Schüler und sie bevorzugen eine schlichte Farbe. Die restlichen Zahlen können wir nun in die Vierfeldertafel eintragen:
$\begin{array}{c|c|c|c} & L & S & \mathrm{gesamt} \\ & & & \\ \hline & & & \\ B & 8\% & 64{,}5\ \% & 72{,}5\ \% \\ & & & \\ \hline & & & \\ \bar{B} & 2\ \% & 25{,}5\ \% & 27{,}5\ \% \\ & & & \\ \hline & & & \\ \mathrm{gesamt} & 10\ \% & 90\ \% & 100\ \% \end{array}$
Alternatives Vorgehen: Statt jede Zahl direkt in eine relative Häufigkeit umzuwandeln, können wir auch die Vierfeldertafel zuerst mit den absoluten Häufigkeiten ausfüllen und dann alle Zahlen durch die Grundmenge $800$ teilen und so die Prozentzahlen erhalten. Dafür stellen wir die Vierfeldertafel mit absoluten Häufigkeiten auf:
$\begin{array}{c|c|c|c} & L & S & \mathrm{gesamt} \\ & & & \\ \hline & & & \\ B & 64 & 516 & 580 \\ & & & \\ \hline & & & \\ \bar{B} & 16 & 204 & 220 \\ & & & \\ \hline & & & \\ \mathrm{gesamt} & 80 & 720 & 800 \end{array}$
Indem wir die Zahlen in der Tabelle in relative Häufigkeiten umwandeln, können wir das gewünschte Ergebnis erhalten.
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Rechteck
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Was ist eine Viertelstunde
- Prisma
- Mitternachtsformel
- Grundrechenarten Begriffe
- Dreiecksarten
- Quader
- Satz des Pythagoras
- Dreieck Grundschule
- Kreis
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen in Worten schreiben
- Meter
- Orthogonalität
- Schriftlich multiplizieren
- Brüche multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen berechnen
- Brüche addieren
- Kongruenz
- Exponentialfunktion
- Scheitelpunktform
- Logarithmus
- Erwartungswert
- Skalarprodukt
- Primfaktorzerlegung
- Quadratische Ergänzung
- Zinseszins
- Geradengleichung aus zwei Punkten bestimmen
- Sinusfunktion
- Natürliche Zahlen
- Brüche dividieren