Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Skalare Multiplikation – Vielfache von Vektoren

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.1 / 10 Bewertungen
Die Autor*innen
Avatar
Team Digital
Skalare Multiplikation – Vielfache von Vektoren
lernst du in der Oberstufe 6. Klasse - 7. Klasse - 8. Klasse - 9. Klasse

Skalare Multiplikation – Vielfache von Vektoren Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Skalare Multiplikation – Vielfache von Vektoren kannst du es wiederholen und üben.
  • Berechne die skalaren Multiplikationsaufgaben.

    Tipps

    Bei der skalaren Multiplikation multiplizieren wir einen Vektor mit einem Skalar $r$, indem wir jede Koordinate des Vektors mit dem Skalar multiplizieren:

    $r \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} r \cdot a \\ r \cdot b \end{pmatrix}$

    Achte auf die richtigen Vorzeichen.

    Lösung

    Durch die skalare Multiplikation wird die Länge des Vektors verändert. Beispielsweise ist beim Verdoppeln eines Vektors der neue Vektor zweimal so lang.

    Konkret multiplizieren wir einen Vektor mit einem Skalar, also einer Zahl, indem wir jede Vektorkoordinate mit der Zahl multiplizieren:
    $r \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} r \cdot a \\ r \cdot b \end{pmatrix}$

    Somit ergibt sich für die gegebenen skalaren Multiplikationen:

    1) $\quad 0,\!5 \cdot \begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 0,\!5 \cdot 2 \\ 0,\!5 \cdot (-4) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

    2)$\quad 4 \cdot \begin{pmatrix} 0,\!25 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \cdot 0,\!25 \\ 4 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$

    3)$\quad -1\cdot \begin{pmatrix} 2 \\ -0,\!5 \end{pmatrix} = \begin{pmatrix} -1 \cdot 2 \\ -1 \cdot (-0,\!5) \end{pmatrix} = \begin{pmatrix} -2 \\ 0,\!5 \end{pmatrix}$

    4)$\quad -\dfrac{1}{4} \cdot \begin{pmatrix} 4 \\ -2 \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} \cdot 4 \\ -\frac{1}{4} \cdot (-2) \end{pmatrix} = \begin{pmatrix} -1 \\ 0,\!5 \end{pmatrix}$

    5)$\quad 2\cdot \begin{pmatrix} -1 \\ 0,\!5 \end{pmatrix} = \begin{pmatrix} 2 \cdot (-1) \\ 2 \cdot 0,\!5 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$

  • Beschreibe die skalare Multiplikation von Vektoren.

    Tipps

    Beispiel:

    $1,\!5 \cdot \begin{pmatrix} 4 \\ 6 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 9\\ -3 \end{pmatrix}$

    Multiplizieren wir mit einer Zahl, deren Betrag größer als $1$ ist, so verlängert sich der Vektor.

    Lösung

    Ein Vektor wird durch einen Pfeil dargestellt, der durch seine Länge und Richtung eindeutig bestimmt ist.

    Durch die skalare Multiplikation wird die Länge des Vektors verändert. Beispielsweise ist beim Verdoppeln eines Vektors der neue Vektor zweimal so lang.

    Allgemein gilt:

    • Multiplizieren wir mit einer Zahl, deren Betrag größer als $1$ ist, so verlängert sich der Vektor (Streckung).
    • Multiplizieren wir mit einer Zahl, deren Betrag kleiner als $1$ ist, so verkürzt sich der Vektor (Stauchung).
    • Multiplizieren wir mit einer negativen Zahl, so kehrt sich die Richtung des Vektors um.
    Konkret multiplizieren wir einen Vektor mit einem Skalar, also einer Zahl, indem wir jede Vektorkoordinate mit der Zahl multiplizieren.

    Beispiel:

    Wir multiplizieren den Vektor $\begin{pmatrix} 4 \\ 6 \\ -2 \end{pmatrix}$ mit der Zahl $0,\!5$. Wir rechnen:

    $0,\!5 \cdot \begin{pmatrix} 4 \\ 6 \\ -2 \end{pmatrix} = \begin{pmatrix} 0,\!5 \cdot4 \\ 0,\!5 \cdot6 \\ 0,\!5 \cdot (-2) \end{pmatrix} = \begin{pmatrix} 2 \\ 3\\ -1 \end{pmatrix}$

    Der Vektor wurde dadurch verkürzt und seine Richtung wurde beibehalten.

  • Bestimme den Faktor der skalaren Multiplikation.

    Tipps

    Du kannst den Faktor bestimmen, indem du die eine Vektorkoordinate des Ergebnisses durch eine Vektorkoordinate des vorderen Vektors teilst.

    $5 \cdot \begin{pmatrix} 1 \\ 4\\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 20\\ 15 \end{pmatrix}$, weil $5:1=5$ und $20:4=5$ und $15:3=5$

    Lösung

    Wir multiplizieren einen Vektor mit einem Skalar, also einer Zahl, indem wir jede Vektorkoordinate mit der Zahl multiplizieren. Wir können also andersherum den Faktor bestimmen, indem wir die eine Vektorkoordinate des Ergebnisses durch eine Vektorkoordinate des vorderen Vektors teilen.

    Somit ergibt sich:

    • $2:1=2$ und $6:3=2$ und $-4:(-2)=2$
    $\quad \Rightarrow \quad \color{#669900}{2} \color{black}\cdot \begin{pmatrix} 1 \\ 3\\ -2 \end{pmatrix} =\begin{pmatrix} 2 \\ 6\\ -4 \end{pmatrix}$
    • $6:(-2)=-3$ und $-12:4=-3$ und $-1,\!5:0,\!5=-3$
    $\quad \Rightarrow \quad \color{#669900}{-3} \color{black}\cdot \begin{pmatrix} -2 \\ 4\\ 0,\!5 \end{pmatrix} =\begin{pmatrix} 6 \\ -12\\ -1,\!5 \end{pmatrix}$
    • $1:5=0,\!2$ und $-2:(-10)=0,\!2$
    $\quad \Rightarrow \quad \color{#669900}{0,\!2} \color{black}\cdot \begin{pmatrix} 5 \\ -10\\ 0 \end{pmatrix} =\begin{pmatrix} 1 \\ -2\\ 0 \end{pmatrix}$
    • $-1:2=-0,\!5$ und $-2:4=-0,\!5$
    $\quad \Rightarrow \quad \color{#669900}{-0,\!5} \color{black}\cdot \begin{pmatrix} 2 \\ 0\\ 4\end{pmatrix} =\begin{pmatrix} -1 \\ 0\\ -2 \end{pmatrix}$
  • Entscheide, welche Vektoren parallel sind.

    Tipps

    Zwei Vektoren sind genau dann parallel, wenn sie skalare Vielfache voneinander sind.

    Beispiel:

    $\begin{pmatrix} 5 \\ 3\\ 1\end{pmatrix} \uparrow \uparrow \begin{pmatrix} 15 \\ 9\\ 3\end{pmatrix} $, da $\begin{pmatrix} 5 \\ 3\\ 1\end{pmatrix} \cdot 3 = \begin{pmatrix} 15 \\ 9\\ 3\end{pmatrix}$.

    Lösung

    Vektoren sind durch ihre Länge und Richtung definiert. Vektoren sind nicht ortsgebunden. Zwei Vektoren sind genau dann parallel ($\uparrow \uparrow$ oder $\uparrow \downarrow$), wenn sie skalare Vielfache voneinander sind. Wir unterscheiden zwischen $\uparrow \uparrow$ und $\uparrow \downarrow$, je nach dem, ob die beiden Vektoren in die gleiche Richtung zeigen oder nicht.

    Wir müssen also für jeden Vektor prüfen, von welchem gegebenen Vektor er ein Vielfaches ist. Somit ergibt sich:

    $ \begin{pmatrix} 2 \\ 0\\ -4\end{pmatrix} \uparrow \uparrow \color{lightskyblue}{\begin{pmatrix} 1 \\ 0\\ -2\end{pmatrix}}$, da $ \begin{pmatrix} 2 \\ 0\\ -4\end{pmatrix} \cdot 0,\!5 = \begin{pmatrix} 1 \\ 0\\ -2\end{pmatrix}$.

    $ \begin{pmatrix} 2 \\ 0\\ -4\end{pmatrix} \uparrow \uparrow \color{lightskyblue}{\begin{pmatrix} 3 \\ 0\\ -6\end{pmatrix}}$, da $ \begin{pmatrix} 2 \\ 0\\ -4\end{pmatrix} \cdot \frac{3}{2} = \begin{pmatrix} 3 \\ 0\\ -6\end{pmatrix}$.

    $ \begin{pmatrix} 2 \\ 0\\ -4\end{pmatrix} \uparrow \uparrow \color{lightskyblue}{\begin{pmatrix} 0,\!5 \\ 0\\ -1\end{pmatrix}}$, da $ \begin{pmatrix} 2 \\ 0\\ -4\end{pmatrix} \cdot 0,\!25 = \begin{pmatrix} 0,\!5 \\ 0\\ -1\end{pmatrix}$.


    $\begin{pmatrix} -1 \\ 0\\ 3\end{pmatrix} \uparrow \uparrow \color{violet}{\begin{pmatrix} -2 \\ 0\\ 6\end{pmatrix}}$, da $\begin{pmatrix} -1 \\ 0\\ 3\end{pmatrix} \cdot 2 = \begin{pmatrix} -2 \\ 0\\ 6\end{pmatrix}$.

    $\begin{pmatrix} -1 \\ 0\\ 3\end{pmatrix} \uparrow \uparrow \color{violet}{\begin{pmatrix} -3 \\ 0\\ 9\end{pmatrix}} $, da $\begin{pmatrix} -1 \\ 0\\ 3\end{pmatrix} \cdot 3 = \begin{pmatrix} -3 \\ 0\\ 9\end{pmatrix}$.


    $\begin{pmatrix} 3 \\ 2\\ 1\end{pmatrix} \uparrow \downarrow \color{gold}{\begin{pmatrix} -1,\!5 \\ -1\\ -0,\!5\end{pmatrix}}$, da $\begin{pmatrix} 3 \\ 2\\ 1\end{pmatrix} \cdot (-0,\!5) = \begin{pmatrix} -1,\!5 \\ -1\\ -0,\!5\end{pmatrix}$.

    $\begin{pmatrix} 3 \\ 2\\ 1\end{pmatrix} \uparrow \uparrow \color{gold}{\begin{pmatrix} 4,\!5 \\ 3\\ 1,\!5\end{pmatrix}}$, da $\begin{pmatrix} 3 \\ 2\\ 1\end{pmatrix} \cdot 1,\!5 = \begin{pmatrix} 4,\!5 \\ 3\\ 1,\!5\end{pmatrix}$.


    Die Vektoren $\begin{pmatrix} -1 \\ 0\\ 4\end{pmatrix}$ und $\begin{pmatrix} 0 \\ 2\\ 1\end{pmatrix}$ sind zu keinem der gegebenen Vektoren parallel.

  • Gib an, wie die Multiplikation mit einem Skalar den Vektor $\vec{v}$ verändert.

    Tipps

    Multiplizieren wir einen Vektor mit einer negativen Zahl, so kehrt sich die Richtung des Vektors um.

    Hier siehst du verschiedene skalare Multiplikationen des Vektors $\vec{v}$:

    Lösung

    Ein Vektor wird durch Länge und Richtung charakterisiert.

    Durch die skalare Multiplikation wird die Länge des Vektors verändert. Beispielsweise ist beim Verdoppeln eines Vektors der neue Vektor zweimal so lang.

    Allgemein gilt:

    • Multiplizieren wir mit einer Zahl, deren Betrag größer als $1$ ist, so verlängert sich der Vektor (Streckung).
    • Multiplizieren wir mit einer Zahl, deren Betrag kleiner als $1$ ist, so verkürzt sich der Vektor (Stauchung).
    • Multiplizieren wir mit einer negativen Zahl, so kehrt sich die Richtung des Vektors um.
    $\quad$

    Für die gegebenen Multiplikationen ergibt sich also:

    • $ 1,\!4 \cdot \vec{v}$
    Der Faktor ist positiv und größer als $1$.
    $\Rightarrow$ Streckung (Verlängerung) des Vektors ohne Änderung der Richtung

    • $ -\dfrac{2}{3} \cdot \vec{v}$
    Der Faktor ist negativ und sein Betrag ist kleiner als $1$.
    $\Rightarrow$ Umkehrung und Stauchung (Verkürzung) des Vektors

    • $ -2 \cdot \vec{v}$
    Der Faktor ist negativ und sein Betrag ist größer als $1$.
    $\Rightarrow$ Umkehrung und Streckung (Verlängerung) des Vektors

    • $ 0,\!2 \cdot \vec{v}$
    Der Faktor ist positiv und kleiner als $1$.
    $\Rightarrow$ Stauchung (Verkürzung) des Vektors ohne Änderung der Richtung

  • Überprüfe die Multiplikationsaufgaben mit Vektoren.

    Tipps

    Der Nullvektor lautet $\begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$.

    Überprüfe, ob alle Vektorkoordinaten richtig multipliziert wurden.

    Lösung

    Bei der skalaren Multiplikation multiplizieren wir einen Vektor mit einer Zahl, indem wir jede Vektorkoordinate mit dieser Zahl multiplizieren. Bei der Multiplikation mit Null entsteht der Nullvektor $\begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$.

    Wir überprüfen damit die Rechnungen:

    • $\begin{pmatrix} 1 \\ 1\\ 1\end{pmatrix} \cdot (-1) = \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$
    Falsch! – Wir müssen jede Vektorkoordinate mit der Zahl $-1$ multiplizieren und erhalten:
    $\begin{pmatrix} 1 \\ 1\\ 1\end{pmatrix} \cdot (-1) = \begin{pmatrix} -1 \\ -1\\ -1\end{pmatrix} $


    • $0 \cdot \begin{pmatrix} 4 \\ 3 \\ 2\end{pmatrix} \cdot (-1) = \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$
    Richtig! – Wir können die beiden Skalare zusammenfassen und erkennen:
    $0 \cdot \begin{pmatrix} 4 \\ 3 \\ 2\end{pmatrix} \cdot (-1) = 0 \cdot (-1) \cdot \begin{pmatrix} 4 \\ 3 \\ 2\end{pmatrix} = 0 \cdot \begin{pmatrix} 4 \\ 3 \\ 2\end{pmatrix} = \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$


    • $\begin{pmatrix} 1 \\ 1\\ 1\end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix} = \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix} $
    Falsch! – Bei der Multiplikation zweier Vektoren, dem sogenannten Skalarprodukt, ist das Ergebnis eine Zahl:
    $\begin{pmatrix} 1 \\ 1\\ 1\end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix} = 1 \cdot 0 + 1 \cdot 0 + 1 \cdot 0 = 0$


    • $\begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix} \cdot 3 = \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$
    Richtig! – Wenn wir jede Vektorkoordinate, also jeweils die $0$ mit $3$ multiplizieren, erhalten wir $0 \cdot 3=0$, insgesamt also wieder den Nullvektor.


    • $0 \cdot \begin{pmatrix} 1 \\ 2 \\ 3\end{pmatrix} = \begin{pmatrix} 0 \\ 2\\ 3\end{pmatrix}$
    Falsch! – Hier wurde nur die erste Vektorkoordinate multipliziert. Korrekt lautet die Rechnung:
    $0 \cdot \begin{pmatrix} 1 \\ 2 \\ 3\end{pmatrix} = \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.374

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.469

Lernvideos

35.645

Übungen

33.181

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden