Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Polynomdivision – Erklärung

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.5 / 2 Bewertungen
Die Autor*innen
Avatar
Team Digital
Polynomdivision – Erklärung
lernst du in der Oberstufe 7. Klasse - 8. Klasse - 9. Klasse

Grundlagen zum Thema Polynomdivision – Erklärung

Polynomdivision – Definition

Die Polynomdivision ist ein Verfahren in der Mathematik zur Berechnung von Nullstellen und dient der Vereinfachung von Termen.

Bei der Polynomdivision wird, wie der Name bereits andeutet, ein Polynom durch ein anderes Polynom dividiert.

Beispielsweise sind sowohl $-x^2-7x -12$ als auch $x+4$ Polynome.
Die Rechnung $(-x^2-7x -12) : (x+4)$ stellt demnach eine Polynomdivision dar.

Polynomdivision – Erklärung

Wir wollen die Durchführung der Polynomdivision anhand eines Funktionsterms erklären, dessen Nullstellen gefunden werden sollen. So können wir einerseits das schrittweise Vorgehen der Polynomdivision zeigen und andererseits den Nutzen für die Nullstellensuche erläutern.

Durchführung der Polynomdivision: 1. Schritt

An einem Beispiel lässt sich das Verfahren am besten verstehen. Wollen wir beispielsweise die Nullstellen der kubischen Funktion

$f(x)=x^{3}-2x^{2}-5x+6$

finden, so müssen wir zunächst eine erste Nullstelle der Funktion ermitteln. Diese Nullstelle kann durch Raten oder durch Zeichnen der Funktion gefunden werden.

Um eine Nullstelle zu raten, ermitteln wir am besten die Teiler des konstanten Gliedes, also des Terms ohne Faktor $x$ (hier im Beispiel die $6$), und setzen diese Werte in die Funktionsgleichung für $x$ ein. Ist das Ergebnis $0$, haben wir die erste Nullstelle gefunden. Mögliche Teiler sind in unserem Beispiel $1$, $-1$, $2$, $-2$, $3$, $-3$, $6$ und $-6$.

Setzen wir zum Beispiel für $x$ die $1$ in die Funktionsgleichung ein, erhalten wir:

$f(1)=1^{3} -2 \cdot 1^{2} - 5 \cdot 1 + 6 = 1 -2-5+6=0$

Das bedeutet, dass mit $x_1=1$ die erste Nullstelle der Funktion gefunden ist.

Der erste Linearfaktor der Funktion $f(x)=x^{3}-2x^{2}-5x+6$ ist also $(x-1)$.
Eine mögliche Linearfaktorzerlegung der Funktion lautet damit:

$f(x)=x^{3}-2x^{2}-5x+6 = (x-1) \cdot y \cdot z$.

$y$ und $z$ stellen dabei die noch unbekannten, weiteren Linearfaktoren dar. Es muss insgesamt drei Linearfaktoren geben, da es sich um eine kubische Funktion, also eine Funktion dritten Grades, handelt.
Setzen wir in den ersten Linearfaktor die $1$ ein, also den Wert der ersten Nullstelle, ist dieser Faktor $0$. Der Funktionswert ist dann auch $0$, egal, was die anderen Linearfaktoren ergeben, da hier mit $0$ multipliziert wird. (Das ist der Satz vom Nullprodukt.)

Nun müssen wir die anderen beiden Linearfaktoren finden, um weitere Nullstellen bestimmen zu können. Dafür nutzen wir die Polynomdivision.

Durchführung der Polynomdivision: 2. Schritt

Teilen wir den Funktionsterm durch den bereits gefundenen Linearfaktor, so bleiben auf der rechten Seite die beiden bisher noch nicht gefundenen Linearfaktoren übrig:

$\begin{array}{ccccll} x^{3}-2x^{2}-5x+6 & & & = & (x-1) \cdot y \cdot z & \quad\big\vert~: (x-1) \\[2pt] (x^{3}-2x^{2}-5x+6) & : & (x-1) & = & y \cdot z & \end{array}$

Die Divisionsaufgabe auf der linken Seite wird als Polynomdivision bezeichnet:

$(x^{3}-2x^{2}-5x+6) : (x-1)$

Das Vorgehen funktioniert folgendermaßen:

1. Teile den ersten Term des Dividenden ${\color{#669900}{x^3}}-2x^2-5x+6$ durch den ersten Term des Divisors ${\color{#669900}{x}}-1$:

${\color{#669900}{x^3}} : {\color{#669900}{x}} = {\color{#669900}{x^2}}$

2. Das Ergebnis ${\color{#669900}{x^2}}$ schreibst du hinter das Gleichheitszeichen:

$({\color{#669900}{x^3}}-2x^2-5x+6) : ({\color{#669900}{x}}-1) = {\color{#669900}{x^2}}$

3. Nun multiplizierst du den Divisor ${\color{#669900}{(x-1)}}$ mit dem Zwischenergebnis ${\color{#669900}{x^2}}$, also:

${\color{#669900}{(x-1)}} \cdot {\color{#669900}{x^2}} = {\color{#669900}{x^3-x^2}}$

Dieses Ergebnis schreibst du stellengerecht unter das erste Polynom:

$\begin{array}{lcccl} (x^3-2x^2-5x+6) & : & {\color{#669900}{(x-1)}} & = & {\color{#669900}{x^2}} \\[2pt] ({\color{#669900}{x^3-x^2}}) & & & & \end{array}$

4. Subtrahiere jetzt $x^3-x^2$ vom ersten Polynom:

$\begin{array}{lcccl} ~~~(x^3-2x^2-5x+6) & : & (x-1) & = & x^2 \\[2pt] \underline{{\color{#669900}{-(}} x^3-x^2 {\color{#669900}{)}}} & & & & \end{array}$

Schreibe das Ergebnis unter den Strich:

$\begin{array}{lcccl} ~~~(x^3-2x^2-5x+6) & : & (x-1) & = & x^2 \\[2pt] \underline{{\color{#669900}{-(}} x^3-x^2 {\color{#669900}{)}}} & & & & \\[2pt] ~~~~\,0~-\,x^2 & & & & \end{array}$

Du merkst, dass der erste Term $x^3$ dabei wegfällt. Das muss so sein.
Bringe nun auch die restlichen Terme des ersten Polynoms nach unten:

$\begin{array}{lcccl} ~~~(x^3-2x^2{\color{#669900}{-5x+6}}) & : & (x-1) & = & x^2 \\[2pt] \underline{-(x^3-x^2)} & & & & \\[2pt] ~~~~~~~~~\,-\,x^2{\color{#669900}{-5x+6}} & & & & \end{array}$

Mit der neuen Zeile hast du nun einen neuen Dividenden.

5. Nun beginnt die Division von vorne. Teile jetzt den ersten Term des neuen Dividenden, also ${\color{#669900}{-x^2}}$, durch den ersten Term des Divisors, also wieder durch ${\color{#669900}{x}}$, und ergänze das Ergebnis rechts:

$\begin{array}{lcccl} ~~~(x^3-2x^2-5x+6) & : & ({\color{#669900}{x}}-1) & = & x^2 {\color{#669900}{-x}} \\[2pt] \underline{-(x^3-x^2)} & & & & \\[2pt] ~~~~~~~~~\,{\color{#669900}{-\,x^2}}-5x+6 & & & & \end{array}$

Wiederhole die Schritte 1. bis 4., bis am Ende $0$ bei der Subtraktion herauskommt. Die gesamte Polynomdivision sieht dann wie folgt aus:

$\begin{array}{lcccl} ~~~(x^3-2x^2-5x+6) & : & (x-1) & = & x^2-x-6 \\[2pt] \underline{-(x^3-x^2)} & & & & \\[2pt] ~~~~~~~~~\,-\,x^2-5x+6 & & & & \\[2pt] ~~~~~~\underline{-(-x^2+x)} & & & & \\[2pt] ~~~~~~~~~~~~~~~~~~-\,6x+6 & & & & \\[2pt] ~~~~~~~~~~~~~~\underline{-(-6x+6)} & & & & \\[2pt] ~~~~~~~~~~~~~~~~~~~~~~~0 \end{array}$

Beachte, dass wir gleiche Potenzen immer untereinander schreiben, damit das Subtrahieren der Zeilen übersichtlich bleibt.

Nicht bei jeder Polynomdivision kommt am Ende $0$ heraus, das heißt, nicht jede Polynomdivision geht genau auf. Darauf kommen wir noch zurück.

Durchführung der Polynomdivision: 3. Schritt

Um die restlichen Nullstellen $x_2$ und $x_3$ zu finden, müssen wir nun nur noch die Lösungen des Polynoms $x^2-x-6=0$ bestimmen. Da es sich hierbei um eine quadratische Gleichung handelt, können wir dafür zum Beispiel die $pq$-Formel verwenden:

$x_{2,3}=-(-\frac{1}{2}) \pm\sqrt{{\left(-\frac{1}{2}\right)}^2-(-6)}$

$x_{2}=3$

$x_{3}=-2$

Die Lösungen dieses Polynoms sind also $x_2=3$ und $x_3=-2$.

Damit haben wir nun alle Nullstellen der kubischen Funktion $f(x)=x^{3}-2x^{2}-5x+6$ gefunden. Die Nullstellen sind $x_1=1$, $x_2=3$ und $x_3=-2$.

In Linearfaktorzerlegung lautet die Funktion also:

$f(x)=x^{3}-2x^{2}-5x+6=(x-1) \cdot (x-3) \cdot (x+2)$

So wie die $pq$-Formel dazu dient, quadratische Funktionsterme zu faktorisieren, kann mit der Polynomdivision dasselbe für Funktionen höheren Grades erreicht werden, wenn eine Nullstelle (und damit ein Linearfaktor) bereits bekannt ist oder erraten wurde.

Polynomdivision – Beispiel

Anhand des Beispiels $(-x^2-7x -12) : (x+4)$ wollen wir nun das Vorgehen bei der Polynomdivision noch einmal im Schnelldurchlauf durchgehen:

1. Zunächst wird der erste Summand $-x^2$ des Dividenden durch den ersten Summanden $x$ des Divisors geteilt:

$\dfrac{-x^2}{x}={\color{#669900}{-x}}$

2. Dieses Ergebnis wird hinter dem Gleichheitszeichen aufgeschrieben:

$(-x^2-7x-12) : (x+4) = {\color{#669900}{-x}}$

3. Nun wird das Ergebnis ${\color{#669900}{-x}}$ mit dem gesamten Divisor $(x+4)$ multipliziert:

${\color{#669900}{-x}} \cdot (x+4) = -x^2-4x$

4. Das Produkt wird vom Dividenden subtrahiert:

$(-x^2-7x-12)-(-x^2-4x)={\color{#669900}{-3x-12}}$

Dies ist der neue Dividend.

5. Es geht weiter wie in Schritt 1, der erste Summand des neuen Dividenden wird also wieder durch $x$ geteilt:

$\dfrac{-3x}{x}={\color{#669900}{-3}}$

Dieses Ergebnis wird hinter $-x$ auf der rechten Seite des Gleichheitszeichens aufgeschrieben:

$(-x^2-7x-12) : (x+4) = -x{\color{#669900}{-3}}$

6. Wieder wird das Ergebnis mit dem gesamten Divisor multipliziert:
${\color{#669900}{-3}} \cdot (x+4)=-3x-12$

7. Schließlich wird das Produkt vom Dividenden subtrahiert:
$-3x-12-(-3x-12)={\color{#669900}{0}}$

Damit ist die Polynomdivision aufgegangen und als Ergebnis bleibt:

$(-x^2-7x-12) : (x+4) = -x-3$

In der folgenden Abbildung sind alle beschriebenen Rechenschritte auf einen Blick dargestellt:

Polynomdivision Beispiel

Polynomdivision mit Rest

Bei den ersten beiden Rechnungen kam zum Schluss immer $0$ heraus, das heißt, die Polynomdivision ging genau auf. Dies muss nicht immer so sein.

Bei der Polynomdivision $(-x^2+2x+2) : (x+1)$ bleibt beispielsweise $-1$ übrig, wie du in der Abbildung der entsprechenden Rechnung sehen kannst:

Polynomdivision mit Rest

Wenn die Polynomdivision nicht aufgeht, hat sie einen Rest. Dieser wird am Ende des Lösungsterms als Quotient aus der Restzahl (oder dem Restterm) und dem Divisor der Polynomdivision angegeben.
Bei der dargestellten Polynomdivision lautet der gesamte Lösungsterm demnach wie folgt:

$(-x^2+2x+2) : (x+1) = -x+3+\frac{-1}{x+1}$

Ein Rest tritt immer dann auf, wenn die Polynomdivision nicht aufgeht und der Grad des Divisors höher ist als der Grad des letzten Dividenden (also des Restterms bzw. der Restzahl).

Polynomdivision – Nullstellen

Wir haben bereits gesehen, dass eine häufige Anwendung der Polynomdivision das Bestimmen von Nullstellen von Polynomen ist, deren Grad höher als $2$ ist. Sehen wir uns dazu noch ein weiteres Beispiel an:

Es sei bereits bekannt, dass die Funktion $f$ mit $f(x)=-x^3+3x^2-2$ eine Nullstelle bei $x_1=1$ habe. (Dies kann durch Einsetzen überprüft werden.)
Diese kubische Funktion könnte noch zwei weitere Nullstellen besitzen. Um diese zu ermitteln, dividieren wir den kubischen Funktionsterm durch den Linearfaktor $(x-1)$.
(Eine bereits bekannte Nullstelle wird immer von $x$ subtrahiert, um den entsprechenden Linearfaktor zu erhalten).
Die entsprechende Polynomdivision ist in folgender Abbildung dargestellt:

Polynomdivision Nullstellen einer kubischen Gleichung bestimmen

Der quadratische Term, der das Ergebnis dieser Polynomdivision darstellt, kann nun gleich $0$ gesetzt werden und mithilfe der $pq$-Formel faktorisiert werden. Die Lösungen der Gleichung $x^2+2x+2 = 0$ sind die gesuchten Nullstellen $x_2$ und $x_3$ der kubischen Funktion. Es gilt:

$x_{2,3}=-(-2)\pm\sqrt{{\left(-\frac{2}{2}\right)}^2-(-2)}$

$x_{2}=2+\sqrt{3} \approx 3{,}73$

$x_{3}=2-\sqrt{3} \approx 0{,}27$

Die Funktion $f$ kann also in folgenden Linearfaktoren zerlegt werden:

$f(x)=-x^3+3x^2-2=(x-1) \cdot (x-2-\sqrt{3}) \cdot (x-2+\sqrt{3})$

Polynomdivision – Aufgaben

Du kannst hier noch einige weitere Aufgaben üben und dir dann die Lösungen ansehen:

Führe die Polynomdivision durch: $(x^3+x^2+8x-28) : (x-2)$
Führe die Polynomdivision durch: $(6x^3-3x^2+9) : (x+1)$
Führe die Polynomdivision durch: $(12x^2+5x-10) : (x-2)$

Zusammenfassung der Polynomdivision

  • Die Polynomdivision ist ein Verfahren, bei dem ein Polynom durch ein anderes Polynom dividiert, also geteilt, wird.
  • Die Polynomdivision wird angewendet, um Funktionen höheren Grades zu faktorisieren, also in Linearfaktoren zu zerlegen.
  • Die Linearfaktorzerlegung dient vor allem der Bestimmung der Nullstellen eines Polynoms. Ist eine Nullstelle bereits bekannt (oder kann erraten werden), kann eine Polynomdivision mit dem Linearfaktor dieser Nullstelle als Divisor durchgeführt werden, um das Polynom weiter zu zerlegen.
  • Die Polynomdivision läuft nach einem schrittweisen Schema ab. Die Terme des Dividenden werden nacheinander geteilt, mit dem Divisor multipliziert und wieder subtrahiert, bis der Wert $0$ oder ein Rest übrig bleibt, durch den nicht weiter geteilt werden kann.

Häufig gestellte Fragen zum Thema Polynomdivision

Was ist eine Polynomdivision?
Wie funktioniert die Polynomdivision?
Wie macht man eine Polynomdivision?
Für was braucht man eine Polynomdivision?
Was kann man mit der Polynomdivision machen?
Wann kann ich die Polynomdivision anwenden?
Was passiert, wenn die Polynomdivision nicht aufgeht?
Wie schreibt man den Rest bei der Polynomdivision?
Wie berechnet man den Rest?

Polynomdivision – Erklärung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Polynomdivision – Erklärung kannst du es wiederholen und üben.
  • Vervollständige die Polynomdivision.

    Tipps

    Das Vorgehen bei der Polynomdivision entspricht dem Vorgehen bei der schriftlichen Division ganzer Zahlen.

    Nachdem der erste Summand des Ergebnisses ermittelt worden ist, muss dieser mit dem Divisor verrechnet werden. Dieser Term wird dann vom Dividenden abgezogen.

    Lösung

    Wir betrachten die Polynomdivision $\left(x^3+6x^2-x-30\right):(x+3)$ Schritt für Schritt:

    1. Zuerst wird der erste Summand $x^3$ des Dividenden durch den ersten Summanden des Divisors $x$ geteilt:

    $\frac{x^3}{x}=x^2$

    2. Dieses Ergebnis wird hinter dem Gleichheitszeichen aufgeschrieben.

    3. Nun wird das Ergebnis $x^2$ mit dem Divisor $x+3$ multipliziert zu $x^3+3x^2$.

    4. Das Produkt wird vom Dividenden subtrahiert:

    $x^3+6x^2-x-30-\left(x^3+3x^2\right)=3x^2-x-30$

    Dies ist der „neue“ Dividend.

    5. Es geht weiter wie in Schritt 1:

    $\frac{3x^2}{x}=3x$

    Dieses Ergebnis wird hinter $x^2$ auf der rechten Seite des Gleichheitszeichens aufgeschrieben.

    6. Wieder wird das Ergebnis mit dem Divisor multipliziert:

    $3x\cdot (x+3)=3x^2+9x$

    7. Das Produkt wird vom Dividenden subtrahiert:

    $3x^2-x-30-\left(3x^2+9x\right)=-10x-30$

    8. Erneut geht es weiter wie in Schritt 1:

    $\frac{-10x}{x}=-10$

    Dieses Ergebnis wird hinter $3x$ auf der rechten Seite des Gleichheitszeichens aufgeschrieben.

    9. Das Ergebnis wird mit dem Divisor multipliziert:

    $-10\cdot (x+3)=-10x-30$

    10. Schließlich wird das Produkt von dem Dividenden subtrahiert:

    $-10x-30-(-10x-30)=0$

    Damit ergibt sich:

    $\left(x^3+6x^2-x-30\right):(x+3) = x^2+3x-10$

  • Gib an, was bei der Polynomdivision zu beachten ist.

    Tipps

    Es sind zwei Aussagen richtig.

    Für eine Division gilt allgemein:

    $\text{Dividend} : \text{Divisor} = \text{Quotient}$

    Lösung

    Bei der Polynomdivision wird ein Polynom durch ein anderes geteilt. Ein Polynom kann dadurch in mehrere kleinere Polynome zerlegt werden. Das Vorgehen entspricht im Allgemeinen dem Vorgehen bei der schriftliche Division ganzer Zahlen.


    Wir betrachten die einzelnen Aussagen:


    • Der Grad des Polynoms des Divisors darf nicht größer sein als der Grad des Polynoms des Dividenden.
    Diese Aussage ist richtig. Denn nur wenn der Grad des Polynoms des Divisors nicht größer ist als der Grad des Polynoms des Dividenden, erhalten wir als Ergebnis ein Polynom.


    • Es darf kein Rest bleiben: Die letzte Zeile ergibt null.
    Diese Aussage ist falsch: Es darf ein Rest bleiben. Diesen ergänzen wir als Quotient $\dfrac{\text{Rest}}{\text{Divisor}}$ als weiteren Summanden im Ergebnis.


    • Beim Dividenden müssen zu Beginn die Summanden nach der Größe der Exponenten sortiert werden.
    Diese Aussage ist richtig. Denn nur dann können wir nach unserem Schema „dividieren – multiplizieren – subtrahieren“ vorgehen.


    • Bei der Probe wird das Ergebnis mit dem Dividenden multipliziert.
    Diese Aussage ist falsch: Bei der Probe wird das Ergebnis mit dem Divisor multipliziert. Dieses Produkt muss gleich dem Dividenden sein.
  • Bestimme das Ergebnis der Polynomdivision.

    Tipps

    Achte auf korrekte Vorzeichen.

    Beim dritten Beispiel bleibt ein Rest.

    Lösung

    Wir gehen bei der Polynomdivision nach dem Schema „dividieren – multiplizieren – subtrahieren“ vor. In den einzelnen Beispielen ergibt sich:

    Beispiel 1:

    $~~~ (x^{3} +x^{2} +8x-28)~:~(x-2) ~=~x^{2} + 3x+14$

    $\underline{-(x^{3}-2x^{2})}$

    $~~~~~~~~~~~~~\,3x^{2}+8x-28$

    $\quad \quad ~ \underline{-(3x^{2}-6x) }$

    $\qquad \qquad \quad ~~ 14x-28$

    $\qquad \quad \quad ~~ \underline{-(14x-28)}$

    $\qquad \qquad \qquad \quad \quad ~~~~0$

    Beispiel 2:

    $~~~ (6x^{3} - 3x^{2} \qquad ~ + 9)~:~(x + 1)~=~6x^{2} - 9x + 9$

    $\underline{- (6x^{3} + 6x^{2})}$

    $~~~~~~~~~~~~~~~ \,9x^{2} \qquad ~ + 9$

    $\qquad~~~ \underline{- (9x^{2} - 9x) }$

    $\qquad \qquad \qquad ~~ \,9x + 9$

    $\qquad \qquad \quad ~~\underline{- (9x - 9)}$

    $\qquad \qquad \qquad \qquad ~~ ~~0$

    Beispiel 3:

    $~~~ (12x^{3}+5x^2 ~~~~~~~~~~~~~~ -~10)~:~(x-2)~=~12x^2 + 29x + 58 ~~~ \left(+~\frac{116}{x-2} ~~\text{Rest}\right)$

    $\underline{-(12x^{3}-24x^2) }$

    $~~~~~~~~~~~~~~~~~ \,29x^2 ~~ ~~~~~~~~~~-~10$

    $\qquad ~~~~~ \underline{-(29x^2-58x) }$

    $~~~~~~~~~~~~~~~~~~~~~~~~~~~~-58x~ - ~10$

    $~~~~~~~~~~~~~~~~~~~~~~~~~~~~\underline{-(58x - 116) }$

    $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+~126$

  • Berechne das Ergebnis der Polynomdivision.

    Tipps

    Vergiss die Vorzeichen der Zahlen nicht!

    Im Dividenden kommt kein $x^2$ vor, aber im Ergebnis schon.

    Mache die Probe, falls du unsicher bist.

    Lösung

    $~~~ (2x^{4}+4x^3 ~~~~~~~~~~~~~ -~~x~~ - ~6)~:~(x+3)~=~2x^3 - 2x^2 + 6x + 19 ~~~ \left(-~\frac{63}{x+3} ~~\text{Rest}\right)$

    $\underline{-(2x^4+6x^3) }$

    $~~~~~~~~~~~ \,-~2x^3 ~~~~~~~~~~~-~~x ~~~ -~6$

    $\qquad \underline{-(-~2x^3-6x^2) }$

    $~~~~~~~~~~~~~~~~~~~~~~~~~~~~6x^2 - ~~x ~~~- ~6$

    $~~~~~~~~~~~~~~~~~~~~~~~\underline{-(~6x^2+18x)}$

    $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~19x~- ~6$

    $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\underline{-(19x+57)}$

    $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-63$

  • Gib zu jeder Polynomdivision die passende Probe an.

    Tipps

    Bei der Probe multiplizierst du das Ergebnis der Polynomdivision mit dem Divisor. Dieses Produkt muss gleich dem Dividenden sein.

    Für eine Division gilt allgemein:

    $\text{Dividend} : \text{Divisor} = \text{Quotient}$

    Beispiel:

    $\underbrace{48}_{\text{Dividend}} : \underbrace{6}_{\text{Divisor}} = \underbrace{8}_{\text{Ergebnis}}$

    Wir machen folgende Probe:

    $\underbrace{8}_{\text{Ergebnis}} \cdot \underbrace{6}_{\text{Divisor}}$

    Dieses Produkt ist dann gleich dem Dividenden – in diesem Fall $48$.

    Lösung

    Das Vorgehen bei der Polynomdivision entspricht dem Vorgehen bei der schriftliche Division. Du musst dich also nur an das nachfolgende Schema halten, um auf die richtige Lösung zu kommen:

    $\text{Dividend} : \text{Divisor} = \text{Quotient}$

    Nichtsdestotrotz kann es passieren, dass sich Fehler einschleichen. Um zu überprüfen, ob du richtig gerechnet hast, kannst du die Probe machen. Dazu multiplizierst du das Ergebnis der Polynomdivision mit dem Divisor. Dieses Produkt muss gleich dem Dividenden sein. Dann hast du alles richtig gemacht.

    Erste Rechnung:

    $\underbrace{(5x^3-17x^2+4x+6)}_{\text{Dividend}} : \underbrace{(x-3)}_{\text{Divisor}} = \underbrace{5x^2-2x-2}_{\text{Quotient}}$

    Wir machen folgende Probe:

    $\underbrace{5x^2-2x-2}_{\text{Quotient}} \cdot \underbrace{(x-3)}_{\text{Divisor}}$

    Dieses Produkt ist dann gleich dem Dividenden, also $5x^3-17x^2+4x+6$.

    Zweite Rechnung:

    $\underbrace{(4x^3-5x^2-4x-4)}_{\text{Dividend}} : \underbrace{(x-2)}_{\text{Divisor}} = \underbrace{4x^2+3x+2}_{\text{Quotient}}$

    Wir machen folgende Probe:

    $\underbrace{4x^2+3x+2}_{\text{Quotient}} \cdot \underbrace{(x-2)}_{\text{Divisor}}$

    Dieses Produkt ist dann gleich dem Dividenden, also $4x^3-5x^2-4x-4$.

    Dritte Rechnung:

    $\underbrace{(x^3-2x^2-8x+21)}_{\text{Dividend}} : \underbrace{(x+3)}_{\text{Divisor}} = \underbrace{x^2-5x+7}_{\text{Quotient}}$

    Wir machen folgende Probe:

    $\underbrace{5x^2-2x-2}_{\text{Quotient}} \cdot \underbrace{(x+3)}_{\text{Divisor}}$

    Dieses Produkt ist dann gleich dem Dividenden, also $x^3-2x^2-8x+21$.

  • Überprüfe die Rechnungen.

    Tipps

    Auch wenn eine Polynomdivision keinen Rest hat, kann sie einen Fehler enthalten.

    Nur eine der vier Rechnungen ist korrekt.

    Lösung

    Bei der Polynomdivision gibt es einige häufig auftauchende Fehler, die wir vermeiden wollen:

    • Vorzeichenfehler
    • Fehler in den Potenzen
    • Divisor wird nicht korrekt multipliziert

    Wir überprüfen nun die gegebenen Beispiele:

    Beispiel 1:

    $~~~ (10x^{3} + ~~~~ x^{2} + 9)~:~(\color{#FF66FF}{x}$$ + 1)~=~10x^2 - \color{#FF66FF}{9}$

    $\underline{- (10x^{3} + 10x^{2})}$

    $~~~~~~~~~~~~~~~ \,-9x^{2} + 9$

    $\qquad~~~ \color{#FF66FF}{\underline{- (-9x^2 - 9)}}$

    $\qquad \qquad \qquad ~~ \,0$

    Bei diesem Beispiel wurden beim Multiplizieren die Potenzen falsch notiert. Korrekt lautet die Polynomdivision:

    $~~~ (10x^{3}+ ~~~~ x^2 ~~~~~~~~~~~ +9)~:~(x+1)~=~10x^2 - 9x + 9$

    $\underline{-(10x^{3}+10x^2)}$

    $~~~~~~~~~~~~~~~~~ \,-9x^2 ~~ ~~~~~~~~+9$

    $\qquad ~~~~~ \underline{-(-9x^2-9x) }$

    $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~9x ~+ 9$

    $~~~~~~~~~~~~~~~~~~~~~~~~~~~~\underline{-(9x+9)}$

    $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0$

    Beispiel 2:

    $~~~ (x^{3} -5x^{2} ~~~~~+16x-30)~:~(x\color{#FF66FF}{-}$ $3) ~=~x^{2} \color{#FF66FF}{-}$ $ 2x+22 ~~~ \left(+~\frac{66}{x-3} ~~\text{Rest}\right)$

    $\underline{-(x^{3}-3x^{2})} $

    $~~~~~~~~~~~~~~\,-2x^{2}+16x-30$

    $\quad \quad ~~ \color{#FF66FF}{\underline{-(-2x^{2}-6x) }}$

    $\qquad \qquad \qquad ~~~~22x-30$

    $\qquad \quad \quad ~~~~~~~ \underline{-(22x-66)}$

    $\qquad \qquad \qquad \quad \quad ~~~~+66$

    Hier gibt es einen Vorzeichenfehler. Korrekt lautet die Polynomdivision:

    $~~~ (x^{3} -5x^{2} ~~~~~+16x-30)~:~(x-3) ~=~x^{2} - 2x+10$

    $\underline{-(x^{3}-3x^{2}) }$

    $~~~~~~~~~~~~~~\,-2x^{2}+16x-30$

    $\quad \quad ~~ \underline{-(-2x^{2}+6x)}$

    $\qquad \qquad \qquad ~~~~10x-30$

    $\qquad \quad \quad ~~~~~~~ \underline{-(10x-30)}$

    $\qquad \qquad \qquad \quad \quad ~~~~~~~~0$

    Beispiel 3:

    $~~~ (2x^{3} + 6x^{2} ~~-7x + 4)~:~(x+4) ~=~2x^{2} - 2x+1$

    $\underline{-(2x^{3}+8x^{2}) }$

    $~~~~~~~~~~~~~~\,-2x^{2}-7x+4$

    $\quad \quad ~~ \underline{-(-2x^{2}-8x)}$

    $\qquad \qquad \qquad ~~~~~~~x+4 $

    $\qquad \quad \quad ~~~~~~~~~~ \underline{-(x+4)}$

    $\qquad \qquad \qquad \quad \quad ~~~~~~0$

    Dieses Beispiel enthält keinen Fehler.


    Beispiel 4:

    $~~~ (x^{3} +x^{2} ~~~+8x-10)~:~(x-3) ~=~x^{2} + 4x-4 ~~~ \left(-~\frac{22}{x-3} ~~\text{Rest}\right)$

    $\underline{-(x^{3}-3x^{2}) }$

    $~~~~~~~~~~~~~~\,4x^{2}+8x-10$

    $\quad \quad ~~ \underline{-(4x^{2}-12x)}$

    $\qquad \qquad \qquad \color{#FF66FF}{-4x}$$-10$

    $\qquad \quad \quad ~~~ \underline{-(-4x+12)}$

    $\qquad \qquad \qquad \quad \quad ~~-22$

    Hier ist die Subtraktion falsch. Korrekt lautet die Polynomdivision:

    $~~~ (x^{3} +x^{2} ~~~+8x-10)~:~(x-3) ~=~x^{2} + 4x+20 ~~~ \left(+~\frac{50}{x-3} ~~\text{Rest}\right)$

    $\underline{-(x^{3}-3x^{2})}$

    $~~~~~~~~~~~~~~\,4x^{2}+8x-10$

    $\quad \quad ~~ \underline{-(4x^{2}-12x)}$

    $\qquad \qquad \qquad 20x-10$

    $\qquad \quad \quad ~~~ \underline{-(20x-60)}$

    $\qquad \qquad \qquad \quad \quad ~~~~50$