- Mathematik
- Funktionen
- Partielle Integration
- Partielle Integration
Partielle Integration
- Partielle Integration
- Partielle Integration – Formel
- Partielle Integration – Herleitung
- Partielle Integration – Anwendung
- Partielle Integration – Beispiele
- Partielle Integration – Aufgaben
- Ausblick – das lernst du nach Partielle Integration
- Zusammenfassung der partiellen Integration
- Häufig gestellte Fragen zum Thema Partielle Integration
die Noten verbessern
In wenigen Schritten dieses Video freischalten & von allen sofatutor-Inhalten profitieren:
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Das Partielle Integration Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?
Quiz startenDu musst eingeloggt sein, um bewerten zu können.
Wow, Danke!
Gib uns doch auch deine Bewertung bei Google! Wir freuen uns!
Grundlagen zum Thema Partielle Integration
Partielle Integration
Aus der Differenzialrechnung kennst du bereits die Produktregel zur Berechnung der Ableitung einer Produktfunktion. In der Integralrechnung gibt es eine dazu analoge Rechenregel – die partielle Integration.
Mithilfe der partiellen Integration können Produkte von Funktionen integriert werden.
Partielle Integration – Formel
Die Formel zur partiellen Integration sieht in ihrer allgemeinen Form folgendermaßen aus:
$\int u(x) \cdot v^{\prime}(x) \text{d}x = u(x) \cdot v(x) - \int u^{\prime}(x) \cdot v(x) \text{d} x$
Partielle Integration – Bestimmtes Integral
Die Formel lässt sich auch auf bestimmte Integrale anwenden:
$\int\limits_{a}^{b} u(x) \cdot v^{\prime}(x) ~\text{d}x = \left[ u(x) \cdot v(x) \right]_{a}^{b} - \int\limits_{a}^{b} u^{\prime}(x) \cdot v(x) ~\text{d} x$
Wenn wir eine Funktion $f(x)$ gegeben haben, die integriert werden soll, so müssen wir diese als Produkt von zwei Funktionen $u(x)$ und $v^{\prime}(x)$ darstellen können, um die Formel für die partielle Integration anwenden zu können. Es soll also gelten:
$f(x) = u(x) \cdot v^{\prime}(x)$
Vielleicht kommt dir auf den ersten Blick merkwürdig vor, dass die Funktion $v^{\prime}(x)$ bereits als Ableitung in der Formel steht. Allerdings können wir (fast) jede Funktion als die Ableitung einer anderen Funktion auffassen.
Beispielsweise ist $g(x) = 2x$ eine lineare Funktion. Wir können diese Funktion allerdings auch als die Ableitung einer Funktion $h(x) = x^{2}$ auffassen, denn $h^{\prime}(x) = \left( x^{2} \right)^{\prime} = 2x = g(x)$.
So können wir $g(x)$ als eine Funktion $v^{\prime}(x)$ ansehen, zu der $h(x)$ die Stammfunktion $v(x)$ darstellt.
Eine Funktion $f(x) = e^x \cdot 2x$ wäre ein typisches Beispiel für eine Funktion, die wir als Produkt zweier Funktionen $u(x)$ und $v^{\prime}(x)$ auffassen können. Das könnten wir folgendermaßen formulieren:
$f(x) = e^x \cdot 2x = u(x) \cdot v^{\prime}(x)$
$u(x) = e^x$
$v^{\prime}(x) = 2x$
Partielle Integration – Herleitung
Wir wollen uns noch anschauen, wie wir die Regel der partiellen Integration aus der Produktregel der Differenzialrechnung herleiten können. Dazu schreiben wir die Produktregel zunächst einmal auf:
$( u(x) \cdot v(x) )^{\prime} = u^{\prime}(x) \cdot v(x) + u(x) \cdot v^{\prime}(x) $
Wir können den ersten Term der rechten Seite durch Subtraktion auf die linke Seite bringen:
$( u(x) \cdot v(x) )^{\prime} - u^{\prime}(x) \cdot v(x) = u(x) \cdot v^{\prime}(x) $
Wir bilden auf beiden Seiten das Integral:
$\int ( ( u(x) \cdot v(x) )^{\prime} - u^{\prime}(x) \cdot v(x) ) \text{d}x= \int u(x) \cdot v^{\prime}(x) \text{d} x$
Nach der Summenregel der Integrationsrechnung können wir die linke Seite in zwei Integrale aufteilen:
$\int ( u(x) \cdot v(x) )^{\prime} \text{d}x - \int u^{\prime}(x) \cdot v(x) \text{d}x= \int u(x) \cdot v^{\prime}(x) \text{d} x$
Im ersten Term auf der linken Seite können wir Integral und Ableitung wegfallen lassen, da sich beide gegenseitig aufheben. Zur Verdeutlichung: In diesem Term bilden wir zunächst die Ableitung einer Funktion und integrieren sie im Anschluss. Das Integral (oder die Stammfunktion) einer Ausgangsfunktion ist aber gerade diejenige Funktion, deren Ableitung die Ausgangsfunktion ist.
Also erhalten wir:
$u(x) \cdot v(x) - \int u^{\prime}(x) \cdot v(x) \text{d}x= \int u(x) \cdot v^{\prime}(x) \text{d} x$
Das ist gerade die Formel der partiellen Integration (mit vertauschten Seiten). Andersherum kannst du dir auch folgende Kurzschreibweise merken:
$\int (uv') dx= uv-\int (u'v)dx$
Die Formel bzw. Regel der partiellen Integration wird auch Produktintegration genannt.
Wusstest du schon?
Das Symbol $\int$ für das Integral wurde von Gottfried Wilhelm Leibniz eingeführt. Leibniz war ein deutscher Mathematiker, der zeitgleich mit Newton das Fundament der Infinitesimalrechnung legte – der Rechnung mit Ableitungen und Integralen.
Das Symbol basiert auf dem Buchstaben S für Summe, denn ein Integral entspricht einer unendlichen Summe von (infinitesimal kleinen) Flächen unter einer Kurve.
Partielle Integration – Anwendung
Wann ist es sinnvoll, die Produktintegration, also die Regel der partiellen Integration, anzuwenden?
Wir wenden die partielle Integration an, um eine Funktion zu integrieren, die sich aus zwei oder mehreren Faktoren zusammensetzt. Beispiele für solche Funktionen sind:
- $f(x)=x \cdot e^x$
- $g(x)=\sin(x) \cdot \cos(x)$
- $h(x)=x \cdot \ln(x)$
Allerdings steht in der Formel der partiellen Integration, die wir oben eingeführt haben, ja auf beiden Seiten ein Integral. Worin soll also der Vorteil liegen? Wir wollten es doch leichter haben und nicht schwerer!
Für eine sinnvolle Anwendung der partiellen Integration ist Folgendes zu beachten:
Wir müssen bei der Integration einer Produktfunktion genau überlegen, welcher der beiden Faktoren die Rolle von $v^{\prime}(x)$ spielen soll. Denn von dieser Funktion müssen wir die Stammfunktion kennen. Die andere Funktion spielt dann die Rolle von $u(x)$.
Fehleralarm
Ein häufiger Fehler beim partiellen Integrieren ist, eine unpassende Zuordnung für $u(x)$ und $v^{\prime}(x)$ zu wählen. Wähle für $u(x)$ den Teil der Funktion, der einfacher durch das Ableiten wird und für $v^{\prime}(x)$ den Teil, den du leichter integrieren kannst.
Im Folgenden sehen wir uns ein paar konkrete Beispiele an.
Partielle Integration – Beispiele
Als Beispiel betrachten wir die Funktion $f(x) = x^{3} \cdot x^{2}$. Für diese Funktion wäre die partielle Integration zwar nicht notwendig, aber so können wir das Prinzip der partiellen Integration verstehen und im Anschluss überprüfen.
Wir müssen zunächst festlegen, welchen der Faktoren wir mit $u(x)$ und welchen wir mit $v^{\prime}(x)$ identifizieren. Die Funktion $u(x)$ werden wir im Verlauf der Rechnung ableiten, die Funktion $v^{\prime}(x)$ integrieren müssen. Wir wählen in diesem Fall folgendermaßen aus:
$x^{3} = u(x) ~ ~ ~ \Rightarrow u^{\prime}(x) = 3x^{2}$
$x^{2} = v^{\prime}(x) ~ ~ ~ \Rightarrow v(x) = \frac{1}{3}x^{3}$
Die Ableitung beziehungsweise Stammfunktion haben wir nach den Potenzregeln der Differenzial- beziehungsweise Integralrechnung gebildet. Die so erhaltenen Funktionen müssen wir nun lediglich in die Rechenvorschrift der partiellen Integration einsetzen.
$\int u(x) \cdot v^{\prime}(x) \text{d}x = \int x^{3} \cdot x^{2} \text{d}x = x^{3} \cdot \frac{1}{3}x^{3} - \int 3x^{2} \cdot \frac{1}{3}x^{3} \text{d}x $
Im letzten Term können wir $\frac{1}{3}$ und $3$ kürzen und den ersten Term der rechten Seite vereinfachen:
$ \int x^{3} \cdot x^{2} \text{d}x = \frac{1}{3}x^{6} - \int x^{2} \cdot x^{3} \text{d}x $
Der letzte Term ist damit dasselbe Integral wie auf der linken Seite. Wir können ihn also durch Addition auf die linke Seite bringen. So erhalten wir:
$2 \cdot \int x^{3} \cdot x^{2} \text{d}x = \frac{1}{3}x^{6}$
Jetzt teilen wir auf beiden Seiten durch $2$ und erhalten die Stammfunktion:
$\int x^{3} \cdot x^{2} \text{d}x = \frac{1}{6}x^{6}$
Zur Probe können wir das Integral auch auf herkömmlichem Wege mit der Potenzregel der Integration berechnen:
$\int x^{3} \cdot x^{2} \text{d}x = \int x^{5} = \frac{1}{6} x^{6}$
Das Ergebnis der partiellen Integration ist also korrekt.
Schlaue Idee
Wenn du eine Funktion hast, die das Wachstum von Populationen beschreibt, kann die partielle Integration dabei helfen, den Gesamtzuwachs über die Zeit zu berechnen und dadurch zukünftige Trends besser vorherzusagen.
Partielle Integration – e-Funktion
Als Nächstes betrachten wir ein Produkt, bei dem ein Faktor die e-Funktion ist.
$f(x) = e^{x} \cdot 3x^{2}$
Wir ordnen wieder $u(x)$ und $v^{\prime}(x)$ geschickt zu. Es soll gelten:
$3x^{2} = u(x) ~ ~ ~ \Rightarrow u^{\prime}(x) = 6x$
$e^{x} = v^{\prime}(x) ~ ~ ~ \Rightarrow v(x) = e^{x}$
Eingesetzt in die Formel der partiellen Integration ergibt sich:
$\int 3x^{2} \cdot e^{x} ~\text{d}x = 3x^{2} \cdot e^{x} - \int 6x \cdot e^{x} ~\text{d}x = 3x^{2} \cdot e^{x} - 6x \cdot e^x + 6e^x$
Hier haben wir die partielle Integration zweimal hintereinander angewendet.
Dabei ist es grundsätzlich eine gute Idee, der
Polynome wie $3x^{2}$ werden hingegen in der Rolle von $u(x)$ stets einfacher, da wir diese ja im Zuge der Rechenvorschrift ableiten.
Partielle Integration – Aufgaben
Im Folgenden kannst du anhand einiger Aufgaben üben, welche der beiden Faktoren der zu integrierenden Produktfunktion die Rolle von $v^{\prime}(x)$ spielen sollte und wie die partielle Integration schließlich angewendet wird.
Es ist schlau, $v^{\prime}(x)=e^x$ und $u(x)=x$ zu wählen, weil die Stammfunktion von $v^{\prime}(x)$ bekannt ist $\left( v(x)=e^x \right)$ und weil $u^{\prime}(x)=1$ leicht zu handhaben ist.
Beim Ableiten von Polynomen wird der Exponent immer um $1$ kleiner. Deswegen wählst du bei Exponentialfunktionen der obigen Gestalt immer das Polynom als $u(x)$ und den exponentiellen Faktor als $v^{\prime}(x)$. Dies wird oft auch als Abräumen von Polynomen bezeichnet.
Damit können wir die partielle Integration anwenden:
$\int (x \cdot e^x)dx = x \cdot e^x - \int (1 \cdot e^x)dx = x \cdot e^x - e^x + c = (x-1) \cdot e^x + c$
Zweifellos ist das rechte Integral leichter zu berechnen.
Wenn wir $f(x)=x^2\cdot e^x$ integrieren wollen, gehen wir genauso vor. Dabei müsste dann jedoch zweimal partiell integriert werden.
Auch bei der Integration trigonometrischer Funktionen kann die partielle Integration hilfreich sein.
Bestimmen wir zunächst, was wir später brauchen:
- $v^{\prime}(x)=\cos(x)$
- $v(x)=\sin(x)$
- $u(x)=\sin(x)$
- $u^{\prime}(x)=\cos(x)$
Jetzt können wir in die bekannte Rechenvorschrift einsetzen:
$\int (\sin(x) \cdot \cos(x))dx = \sin(x) \cdot \sin(x) - \int((\cos(x)) \cdot (\sin(x)))dx = (\sin(x))^2 - \int(\sin(x) \cdot \cos(x))dx$
Wie wir sehen, taucht das Ausgangsintegral wieder auf. Wenn wir auf beiden Seiten $\int(\sin(x) \cdot \cos(x))dx$ addieren, erhalten wir:
$2 \cdot \int(\sin(x)\cdot \cos(x))dx = (\sin(x))^2 \quad \big\vert~:2$
$\int(\sin(x) \cdot \cos(x))dx = \frac{1}{2}(\sin(x))^2$
Hier wenden wir einen Trick zur Integration von Logarithmusfunktionen an. Um die Logarithmusfunktion partiell zu integrieren, ergänzen wir den Faktor $1$, da wir ja ein Produkt benötigen. Wir schreiben also:
$ \int \ln(x)dx = \int(\ln(x) \cdot 1)dx$
Jetzt ordnen wir zu:
- $v^{\prime}(x)=1$
- $v(x)=x$
- $u(x)=\ln(x)$
- $u^{\prime}(x)=\frac{1}{x}$
Die partielle Integration sieht dann wie folgt aus:
$\int \ln(x) dx = \int( \ln(x) \cdot 1)dx =\ln(x) \cdot x - \int \left( \frac{1}{x} \cdot x \right)dx = \ln(x) \cdot x - \int 1\,dx = x \cdot \left( \ln(x) - 1\right) + c$
Da die Ableitung von $\ln(x)$ gerade $\left(\ln(x)\right)^{\prime}=\frac{1}{x}$ ist, heben sich $x$ und $\frac{1}{x}$ auf. Deswegen ist es in diesem Fall schlau, das Polynom als $v^{\prime}(x)$ und den Logarithmus als $u(x)$ zu wählen.
Ausblick – das lernst du nach Partielle Integration
Tauche tiefer ein in die Mathematik und entdecke weitere Techniken, die das Integrieren erleichtern. Die lineare Substitution und die Partialbruchzerlegung führen dich weiter auf deinem Weg zum Integrationsprofi. Lass dich faszinieren und entdecke die spannende Welt der Integrale!
Zusammenfassung der partiellen Integration
- Die partielle Integration ist eine Methode zum Integrieren von Funktionen, die aus einem Produkt zusammengesetzt sind.
- Die partielle Integration kann bei unbestimmten und bestimmten Integralen angewendet werden.
- Die Formel für die partielle Integration unbestimmter Integrale lautet:
$\int u(x) \cdot v^{\prime}(x) \text{d}x = u(x) \cdot v(x) - \int u^{\prime}(x) \cdot v(x) \text{d} x$ - Die Formel für die partielle Integration bestimmter Integrale lautet:
$\int\limits_{a}^{b} u(x) \cdot v^{\prime}(x) ~\text{d}x = \left[ u(x) \cdot v(x) \right]_{a}^{b} - \int\limits_{a}^{b} u^{\prime}(x) \cdot v(x) ~\text{d} x$
Häufig gestellte Fragen zum Thema Partielle Integration
Die partielle Integration ist eine Methode, um den Wert eines unbestimmten oder bestimmten Integrals zu berechnen. Sie kommt dann zum Einsatz, wenn ein Funktionsterm als ein Produkt von zwei oder mehr Funktionstermen aufgefasst werden kann. Die partielle Integration ist das Äquivalent zur Produktregel beim Ableiten.
Die Formel zur partiellen Integration lautet:
$\int u(x) \cdot v^{\prime}(x) \text{d}x = u(x) \cdot v(x) - \int u^{\prime}(x) \cdot v(x) \text{d} x$.
Die partielle Integration ist eine Methode zur Integration eines Funktionsterms, der aus einem Produkt zweier Funktionsterme zusammengesetzt ist. Man wendet sie oft an, wenn in einem Integral das Produkt zweier Funktionen steht, von denen die eine einfach zu integrieren und die andere leicht abzuleiten ist.
Die partielle Integration ermöglicht es, bestimmte Produkte von Funktionen zu integrieren. Kennt man eine Stammfunktion des einen oder anderen Faktors und kann damit das Integral auf der rechten Seite bestimmen, so kann man auch das gesamte Produkt integrieren.
1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!
Jetzt registrieren und vollen Zugriff auf alle Funktionen erhalten!
30 Tage kostenlos testenTranskript Partielle Integration
Hallo, in diesem Video geht es um die Regel der Partiellen Integration und wir berechnen dann noch das Integral von ∫lnx. Wir wissen ja zum Beispiel schon, dass wenn wir ein Produkt ableiten, wir nicht einfach die Faktoren ableiten können, sondern es hierfür eine Produktregel gibt. Und beim Integrieren ist das genau so. Wenn ich das Integral aus einem Produkt zweier Funktionen berechnen möchte, kann ich nicht einfach die einzelnen Integrale berechnen, sondern es gibt hierfür eine extra Regel und das ist die Partielle Integration. Also das hier: Produkt der einzelnen Integrale, dürft ihr auf keinen Fall machen! Okay, ich zeige euch erst mal die Regel. Das ist also ∫u'(x)×v(x)dx=[u(x)×v(x)]-∫u(x)×v'(x)dx. Der Term in der eckigen Klammer ist dann schon der erste Teil der Stammfunktion. Den zweiten Teil bekommt man dann über das Integral ganz hinten. Da heißt, wenn man jetzt ein bestimmtes Integral hat, mit Grenzen a und b, dann muss man die auch hinten an das Integral übertragen und an die eckigen Klammern. Aber eigentlich steht hier in der Regel nicht genau das, was wir wollten. Wir wollten ja ∫u(x)×v(x), aber hier steht ja jetzt ∫u'(x)×v(x). Das heißt wir können die Regel nur anwenden, wenn die eine Funktion, quasi etwas ist, was schon abgeleitet wurde. Und die andere Funktion ist glücklicherweise noch normal. Gucken wir uns das mal an dem Beispiel (in den Grenzen von 0 bis 1) ∫ex×xdx. Dann entspricht jetzt ex dem u'(x) und v(x) der Funktion x. Dann kommt in die eckige Klammer vorne u, wir haben jetzt aber nur u'. Aber da u'(x)=ex ist, dann ist u(x) natürlich auch ex, weil die Stammfunktion von ex, ex ist. Das heißt, der erste Term in der Klammer ist ex. Dann kommt v(x), das ist bei uns die Funktion x, das können wir also einfach übernehmen. Dann schreiben wir gleich die Grenzen von 0 bis 1 dran und rechnen -∫ von 0 bis 1. Und jetzt kommt wieder u, das hatten wir eben schon, das ist ex und dann v'. Das ist aber =1, weil v(x)=x ist, also kommt hier eine 1 hin. Und jetzt hat sich das Integral hinten so vereinfacht, dass wir davon die Stammfunktion elementar bestimmen können. Das ist der Sinn der Partiellen Integration. Die vordere Klammer übernehmen wir noch mal und da kommt dann die Stammfunktion von ex, das ist ex, in den Grenzen von 0 bis 1. Jetzt wollen wir mal gucken, ob ex×x-ex wirklich die Stammfunktion von ex×x ist. Also leiten wir mal ab: Wir haben da zuerst ein Produkt, also u'×v+u×v'-ex. Und tatsächlich hebt sich hinten das ex gegenseitig auf und wir haben ex×x. Jetzt möchte ich mal zeigen, warum die Regel überhaupt richtig ist:Das Integral hier rechts bringen wir erst mal auf die andere Seite. Dann haben wir also das Integral von links plus das Integral von rechts ist gleich die eckige Klammer. Dann können wir nach der Summenregel die beiden Integrale als ein Integral über die Summe schreiben. Und jetzt schauen wir mal genau, was da rechts steht: Da steht ein Produkt von zwei Funktionen, und wenn wir das ableiten, bekommen wir genau den Term u'×v+u×v', der links der Integrand ist. Also ist das Rechte, die Stammfunktion vom Linken. Und beim Rechnen kommt es später darauf an, dass man geschickt wählt, welche der Funktionen nun das u' sein soll und welche das v. Von der Funktion, die vorne nicht abgeleitet ist, haben wir später im Integral die Ableitung. Das heißt, die sollte beim Ableiten möglichst einfacher werden. Zum Beispiel Potenzen, da wird der Exponent beim Ableiten kleiner. Und von der andern Funktion, die wir als Ableitung interpretieren, brauchen wir zweimal die Stammfunktion. Das heißt, es sollte eine Funktion sein, von der wir die Stammfunktion schon kennen. Nehmen wir zum Beispiel mal ∫x²×exdx. Da wählen wir ex als schon abgeleitete Funktion und x² als normale Funktion. Denn x² wird beim Ableiten zu 2x und das ist dann ein schon wesentlich einfacherer Term. Und u ist wieder ex. Dann schreiben wir die Faktoren also so rum, dass wir die Formel oben anwenden können. Erst u' und dann v und dann kommt die eckige Klammer, da kommt u×v rein, also ex×x²-∫u×v'. Das u hatten wir eben schon und v' ist 2x. Im nächsten Schritt wird die eckige Klammer übernommen und hinten können wir aus dem Integral die 2 rausziehen (nach der Faktorregel). Ist gleich ex×x²-2×[ und jetzt müssten wir eigentlich nochmal partiell integrieren, aber die Stammfunktion haben wir eben schon bestimmt. Das war ex×x-ex. Dann können wir die Klammern auch noch auflösen. Da steht hier +2ex und da kann ich dann noch ex ausklammern. Als Faustregel könnt ihr euch merken: Wenn ihr ein Produkt habt, aus einer e-Funktion und einer Ganzrationalen Funktion, dann nehmt ihr immer das ex als u' und die Ganzrationale Funktion als v. Denn das ex verändert sich nie. Die Ganzrationale Funktion wird beim Ableiten aber einfacher. So, jetzt möchte ich euch noch einen kleinen Trick zeigen, nämlich wie man ∫lnx berechnet. Man vermutet nicht, dass das partiell geht, aber es geht, indem man sich vorne den Faktor 1 davor schreibt und ihn als Ableitung interpretiert und das lnx als v. Dann wäre also v'(x)=1/x und u(x) die Stammfunktion von 1, also x. Dann kommt in die eckige Klammer u×v, also x×lnx-∫u×v' also x×1/x und das ergibt natürlich 1 und ist dann ganz einfach zu integrieren. Insgesamt kommt also raus x×lnx-x. Jetzt habt ihr also das Prinzip mal kennengelernt, es gibt auch noch schwierigere partielle Integrale, zum Beispiel mit Sinustermen, aber dazu gibt es dann ein anderes Video.
8.793
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.369
Lernvideos
36.244
Übungen
32.795
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
- Brüche Addieren
- Kongruenz
- Exponentialfunktion
- Exponentialfunktion Beispiel
Hallo Merry 07,
das ist nicht richtig. Auf dem letzten Bild des Videos siehst du die Anwendung der Regel. u(x) * v(x) = x * ln(x). Dann kommt das Integral von u(x) * v'(x), also von x * 1/x. Aber x * 1/x ergibt 1, d.h. da steht dann Integral von 1. Integral von 1 ist x (denn x abgeleitet ergibt ja 1). Als Endergebnis ergibt sich also x * ln(x) - x.
Ich sehe nicht, wie du auf das zweite "- x*ln(x)" kommst.
Ich hoffe, es ist jetzt klarer. Viel Erfolg!
Steve
Hallo,
.ich habe bei 7:08 als Endergebnis nur x raus, wegen x*ln(x)-x*ln(x) +x
Ist das falsch?
Hallo Jonas,
ja, das ist dieselbe Regel.
Grüße, Steve
Hallo,
im Buch von Lothar Papula "Mathematik für Ingenieure" steht dir Regel genau anders herum:
Int u(x) * v'(x) = u(x) * v(x) - Int u'(x) * v(x)
ist die selbe Regel oder?
LG
vielen dank auch von mir