Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Lineare Funktionen zeichnen

Erfahrt, wie man lineare Funktionen grafisch darstellt. Von der Form einer linearen Funktion bis hin zum Gebrauch von Steigungsdreiecken – entdeckt verschiedene Methoden zur Erstellung von Graphen. Interessiert? Das und mehr findet ihr im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 177 Bewertungen
Die Autor*innen
Avatar
Team Digital
Lineare Funktionen zeichnen
lernst du in der Unterstufe 3. Klasse - 4. Klasse

Lineare Funktionen zeichnen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Lineare Funktionen zeichnen kannst du es wiederholen und üben.
  • Beschreibe das Vorgehen beim Zeichnen des Graphen einer linearen Funktion.

    Tipps

    Hier siehst du ein mögliches Steigungsdreieck an dem Graphen der linearen Funktion $f(x)=\frac 32 x$.

    Die Normalform einer linearen Gleichung lautet:

    • $f(x)=mx+b$
    Dabei ist $m$ die Steigung und $b$ der $y$-Achsenabschnitt.

    Du siehst hier eine Gerade mit negativer Steigung (grün) und eine Gerade mit positiver Steigung (rot). Wie könnten die Steigungsdreiecke jeweils aussehen?

    Lösung

    Du kannst den Graphen einer linearen Funktion, welcher eine Gerade ist, auf zwei Arten bestimmen. Zum einen kannst du zwei Punkte der Funktion berechnen und mit diesen dann die Gerade in ein Koordinatensystem einzeichnen. Und zum anderen kannst du den $y$-Achsenschnittpunkt $S_y(0\vert b)$, den du mithilfe des $y$-Achsenabschnitts erhältst, und die Steigung nutzen, um über ein Steigungsdreieck die Gerade zu zeichnen. Dabei gehst du wie folgt vor:

    Variante 1

    Du berechnest zwei Punkte $P_1$ und $P_2$, indem du zwei beliebige $x$-Werte jeweils in die Funktion einsetzt und den zugehörigen $y$-Wert berechnest. Diese beiden Punkte trägst du dann in ein Koordinatensystem ein und zeichnest die Gerade durch diese Punkte durch.

    Variante 2

    Liegt die Funktionsgleichung in der Normalform $f(x)=mx+b$ vor, so erhältst du den $y$-Achsenschnittpunkt $S_y(0\vert b)$. Dann setzt du im $y$-Achsenschnittpunkt an und zeichnest das Steigungsdreieck ein. Dieses orientiert sich an dem Vorzeichen der Steigung. Für eine positive Steigung, also eine steigende Gerade, gehst du ....

    • ... nach rechts und nach oben oder ...
    • ... nach links und nach unten.
    Ist die Steigung negativ, also die Gerade fallend, so gehst du ....
    • ... nach links und nach oben oder ...
    • ... nach rechts und nach unten.
    Hier siehst du für eine positive und negative Steigung jeweils zwei Möglichkeiten ein Steigungsdreieck einzuzeichnen.

  • Skizziere die Graphen der gegebenen linearen Funktionen.

    Tipps

    Du kannst zwei Punkte einer linearen Funktion berechnen, indem du zwei $x$-Werte jeweils in die Funktionsgleichung einsetzt und den zugehörigen $y$-Wert bestimmst. Durch diese beiden Punkte zeichnest du dann die jeweilige Gerade.

    Du kannst den Graphen einer linearen Funktion auch mithilfe der Steigung und eines Punktes der Funktion zeichnen. Da alle Funktionsgleichungen in der Normalform $f(x)=mx+b$ vorliegen, bietet sich der $y$-Achsenschnittpunkt $S_y(0\vert b)$ an.

    Lösung

    Du kannst den Graphen einer linearen Funktion, welcher eine Gerade ist, auf zwei Arten bestimmen.

    Variante 1

    Du verwendest zwei Punkte der Funktion, um die Gerade durch diese Punkte in ein Koordinatensystem einzuzeichnen.

    Variante 2

    Du nutzt den $y$-Achsenschnittpunkt, den du mithilfe des $y$-Achsenabschnitts erhältst, und die Steigung, um über ein Steigungsdreieck die Gerade zu zeichnen.

    Wir nutzen im Folgenden die zweite Variante und erhalten die hier abgebildeten Geraden wie folgt:

    Blaue Gerade: $~f(x)= 2x+3$

    • Die Steigung $m=2$ ist positiv. Ausgehend von $S_y(0\vert 3)$ gehst du also einen Schritt nach rechts und zwei Schritte nach oben.
    Orangene Gerade $~f(x)= 0x+4$
    • Die Steigung $m=0$ zeigt, dass die Gerade weder steigt, noch fällt. Sie ist also parallel zur $x$-Achse und verläuft durch den Punkt $S_y(0\vert 4)$.
    Rote Gerade $~f(x)= -\frac 12 x+6$
    • Die Steigung $m=-\frac 12$ ist negativ. Ausgehend von $S_y(0\vert 6)$ gehst du also zwei Schritte nach rechts und einen Schritt nach unten.
    Grüne Gerade$~f(x)= \frac 12 x+1$
    • Diesmal nutzen wir die Variante 1 und berechnen zwei Punkte der Funktion, durch diese die zugehörige Gerade verläuft. Wir rechnen hierzu die Funktionswerte für $x=0$ und $x=2$ und erhalten die folgenden beiden Punkte der grünen Gerade:
    $\qquad f(0)=\frac 12 \cdot 0+1=1\quad \rightarrow \quad P_1(0\vert 1)$

    $\qquad f(2)=\frac 12 \cdot 2+1=1+1=2\quad \rightarrow \quad P_2(2\vert 2)$

  • Ermittle die Geraden der jeweiligen linearen Funktionen.

    Tipps

    Die Normalform einer linearen Funktion lautet: $f(x)=mx+b$

    Dabei ist $m$ die Steigung und $b$ der $y$-Achsenabschnitt. Ist also in einer Funktionsgleichung kein $x$ enthalten, so ist $m=0$.

    Der $y$-Achsenabschnitt ist dabei der Funktionswert an der Stelle $x=0$.

    Lösung

    Du kannst die Gerade einer linearen Funktion zeichnen, indem du den $y$-Achsenschnittpunkt und die Steigung nutzt. Den $y$-Achsenschnittpunkt kannst du über den $y$-Achsenabschnitt in der Normalform einer linearen Funktion ermitteln. Mit einem Steigungsdreieck gelangst du dann zu der jeweiligen Geraden. Damit erhalten wir folgende Geraden:

    Grüne Gerade: $~f_1(x)= \frac 14x+1$

    • Die Steigung $m=\frac 14$ ist positiv. Ausgehend von $S_y(0\vert 1)$ gehst du also vier Schritte nach rechts und einen Schritt nach oben.
    Orangene Gerade $~f_2(x)= 4x+1$
    • Die Steigung $m=4$ ist ebenfalls positiv. Ausgehend von $S_y(0\vert 1)$ gehst du also einen Schritt nach rechts und vier Schritte nach oben.
    Blaue Gerade $~f_3(x)= -x-1$
    • Die Steigung $m=-1$ ist negativ. Ausgehend von $S_y(0\vert -1)$ gehst du also einen Schritt nach rechts und einen Schritt nach unten.
    Violette Gerade$~f_4(x)= -1$
    • Die Steigung $m=0$ zeigt, dass die Gerade weder steigt, noch fällt. Sie ist also parallel zur $x$-Achse und verläuft durch den Punkt $S_y(0\vert -1)$.

  • Leite die Funktionsgleichungen der linearen Funktionen der jeweiligen Geraden her.

    Tipps

    Vor der Variablen $x$ steht die Steigung. Diese kannst du wie folgt ermitteln:

    positive Steigung: $m>0$

    • $\frac{\text{Schritte, die du nach oben gehst}}{\text{Schritte, die du nach rechts gehst}}$
    • $\frac{\text{Schritte, die du nach unten gehst}}{\text{Schritte, die du nach links gehst}}$
    negative Steigung: $m<0$

    • $\frac{\text{Schritte, die du nach oben gehst}}{\text{Schritte, die du nach links gehst}}$
    • $\frac{\text{Schritte, die du nach unten gehst}}{\text{Schritte, die du nach rechts gehst}}$

    Die Normalform einer linearen Funktion lautet $f(x)=mx+b$. Dabei ist $m$ die Steigung und $b$ der $y$-Achsenabschnitt. Damit ist $b$ die Stelle, an der die Gerade die $y$-Achse schneidet.

    Lösung

    Um die Funktionsgleichungen der linearen Funktionen ausgehend von ihren Graphen ermitteln zu können, müssen wir den jeweiligen Geraden die Steigung und den $y$-Achsenabschnitt entnehmen. Diese können wir dann in die Normalform von linearen Funktionen, nämlich $f(x)=mx+b$ einsetzen.

    Die Steigungen ermitteln wir, indem wir die Schritte ausgehend von einem Punkt der Geraden zu einem weiteren Punkt der Geraden zählen. Dann rechnen wir wie folgt:

    positive Steigung: $m>0$

    • $\frac{\text{Schritte, die du nach oben gehst}}{\text{Schritte, die du nach rechts gehst}}$
    • $\frac{\text{Schritte, die du nach unten gehst}}{\text{Schritte, die du nach links gehst}}$
    negative Steigung: $m<0$

    • $-\frac{\text{Schritte, die du nach oben gehst}}{\text{Schritte, die du nach links gehst}}$
    • $-\frac{\text{Schritte, die du nach unten gehst}}{\text{Schritte, die du nach rechts gehst}}$
    Den $y$-Achsenabschnitt können wir einfach ablesen. Er entspricht der Stelle, an der die Gerade die $y$-Achse schneidet.

    Damit erhalten wir folgende Funktionsgleichungen:

    Gerade $f$

    Die Gerade schneidet die $y$-Achse bei $3$, also ist $b=3$. Wir zählen ausgehend von $(0\vert 3)$ zwei Schritte nach rechts und drei Schritte nach unten und kommen bei einem weiteren Punkt auf der Geraden an. Da wir nach rechts und nach unten gegangen sind, ist die Steigung negativ. Sie beträgt:

    • $m=-\frac{\text{Schritte, die du nach unten gehst}}{\text{Schritte, die du nach rechts gehst}}=-\frac 32$
    Damit erhalten wir die Funktionsgleichung: $~f(x)=-\frac 32x+3$

    Gerade $g$

    Genauso gehen wir auch bei dieser Geraden vor. Damit erhalten wir den $y$-Achsenabschnitt $b=0$ und folgende Steigung $m$:

    • $m=\frac{\text{Schritte, die du nach oben gehst}}{\text{Schritte, die du nach rechts gehst}}\frac {2}{1}=2$
    Die Funktionsgleichung lautet: $~g(x)=2x+0=2x$

    Gerade $h$

    Mit dem $y$-Achsenabschnitt $-2$ und der positiven Steigung $1$ erhalten wir: $~h(x)=1x-2=x-2$

  • Gib die Definition einer linearen Funktion wieder.

    Tipps

    Der Graph einer linearen Funktion mit dem $y$-Achsenabschnitt $0$ ist eine Gerade, die durch den Koordinatenursprung verläuft.

    Die Gerade einer linearen Funktion in Normalform schneidet die $y$-Achse im Punkt $(0\vert b)$.

    Lösung

    Eine Funktion mit der Gleichung $f(x)=mx+b$ heißt lineare Funktion. $m$ ist dabei die Steigung und $b$ der $y$-Achsenabschnitt. Der $y$-Achsenabschnitt ist dabei der Funktionswert an der Stelle $x=0$. Wir betrachten nun noch folgende Spezialfälle:

    Spezialfall $m=0$

    Der Graph einer linearen Funktion $f(x)=mx+b$ mit der Steigung $m=0$ ist eine zur $x$-Achse parallele Gerade, die die $y$-Achse bei $b$ schneidet. Eine solche lineare Funktion nennt man auch konstante Funktion.

    Spezialfall $b=0$

    Der Graph einer linearen Funktion $f(x)=mx+b$ mit dem $y$-Achsenabschnitt $b=0$ ist eine Gerade, die durch den Koordinatenursprung verläuft. Eine solche lineare Funktion nennt man auch proportionale Funktion.

  • Entscheide, welche Lage die Geraden der jeweiligen linearen Funktionen zueinander haben.

    Tipps

    Du siehst hier zwei zueinander parallele Geraden. Parallele Geraden haben stets denselben Abstand zueinander und schneiden sich somit nie.

    Hier siehst du einen rechten Winkel. Ein rechter Winkel hat genau $90^\circ$.

    Sind zwei Geraden parallel zueinander, so haben sie dieselbe Steigung $m$.

    Hat eine Gerade die Steigung $m$ und eine andere die Steigung $-\frac 1m$, so schneiden sich diese Geraden in einem rechten Winkel.

    Lösung

    Zunächst zeichnen wir die Geraden der jeweiligen Funktionen. Wir erhalten folgende Geraden:

    • Für die Funktion $f$ erhalten wir die blaue Gerade mit der Steigung $3$ und dem $y$-Achsenabschnitt $-1$. Beim Zeichnen dieser Geraden gehst du also vom Punkt $(0\vert -1)$ einen Schritt nach rechts und drei Schritte nach oben.
    • Die gelbe Gerade erhalten wir für die Funktion $g$. Sie hat die Steigung $-\frac 13$ und den $y$-Achsenabschnitt $-1$. Beim Zeichnen dieser Geraden gehst du also vom Punkt $(0\vert -1)$ drei Schritte nach rechts und einen Schritt nach unten.
    • Für die Funktion $h$ erhalten wir die grüne Gerade mit der Steigung $3$ und dem $y$-Achsenabschnitt $1$. Beim Zeichnen dieser Geraden gehst du also vom Punkt $(0\vert 1)$ einen Schritt nach rechts und drei Schritte nach oben.
    • Die rosafarbene Gerade erhalten wir für die Funktion $i$. Sie hat die Steigung $2$ und den $y$-Achsenabschnitt $0$. Es handelt sich also um eine proportionale Funktion. Die Gerade einer solchen Funktion verläuft durch den Koordinatenursprung. Beim Zeichnen dieser Geraden gehst du also vom Punkt $(0\vert 0)$ einen Schritt nach rechts und zwei Schritte nach oben.
    Damit erhalten wir also die hier abgebildeten Geraden. Diese haben folgende Lagebeziehungen zueinander:

    • Die Geraden $f$ und $h$ sind parallel zueinander.
    • Die Geraden $f$ und $g$ schneiden sich in einem rechten Winkel im Punkt $(0\vert -1)$.
    • Die Geraden $h$ und $i$ schneiden sich im Punkt $(-1\vert -2)$.
    • Die Geraden $f$ und $i$ schneiden sich im Punkt $(1\vert 2)$.