Kreuzprodukt – Definition

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Kreuzprodukt – Definition
Kreuzprodukt – Definition
Das Kreuzprodukt, auch Vektorprodukt genannt, ist eine Rechenoperation, die aus zwei Vektoren einen dritten Vektor berechnet. Dieser neu berechnete Vektor erfüllt bestimmte Eigenschaften.
Das Kreuzprodukt hat als Ergebnis einen Vektor. Daher kommt der Name. Es wird auch als vektorielles Produkt, Vektorprodukt oder äußeres Produkt bezeichnet.
Wir fassen zunächst diese Eigenschaften zusammen, um uns dann mit der Rechenvorschrift und den Rechenregeln für Kreuzprodukte zu beschäftigen.
Wusstest du schon?
Das Kreuzprodukt wird in der Informatik verwendet, um Computergrafiken zu erstellen. Wenn du ein Videospiel spielst, hilft das Kreuzprodukt dabei, die Position und Ausrichtung von Objekten im Raum zu berechnen. Dank dieser mathematischen Operationen wirken Szenen in Videospielen besonders lebendig und realistisch!
Kreuzprodukt – Vektoren
Ein Vektor, zum Beispiel , in dem euklidischen Raum hat drei Koordinaten. Diese Koordinaten werden entweder mit den Indizes , , oder auch mit , , bezeichnet und spaltenweise aufgeschrieben.
Der Vektor sieht im so aus:
.
Das Kreuzprodukt ist nur für Vektoren im definiert.
Kreuzprodukt – Eigenschaften
Das Kreuzprodukt zweier Vektoren und ordnet diesen einen Vektor zu, der die folgenden Eigenschaften hat:
- Der Vektor steht senkrecht auf den Vektoren und :
- Die Vektoren , und bilden ein Rechtssystem.
- Die Länge des Vektors entspricht der Fläche des von und aufgespannten Parallelogramms:
Das Rechtssystem können wir uns folgendermaßen veranschaulichen: Wenn der Daumen der rechten Hand in Richtung des Vektors zeigt und der Zeigefinger in Richtung des Vektors , dann zeigt der senkrecht dazu ausgestreckte Mittelfinger in Richtung des Vektors .
Fehleralarm
Das Kreuzprodukt ist nur für dreidimensionale Vektoren definiert. Ein gängiger Fehler ist die Anwendung auf zweidimensionale. Im Zweidimensionalen gibt es jedoch nur das Skalarprodukt.
Kreuzprodukt – Formel
Das Kreuzprodukt der Vektoren und kann nach folgender Rechenvorschrift berechnet werden:
Wusstest du schon?
Das Kreuzprodukt ist nicht kommutativ– das gilt auch für das Rechnen mit Matrizen. Das bedeutet, dass das Kreuzprodukt von Vektor mit Vektor zu einem anderen Ergebnis führt als das Kreuzprodukt von Vektor mit Vektor – also:
Das ist ein wenig wie die Chiralität deiner Hände: Du kannst die linke Hand nicht so drehen, dass sie mit der rechten Hand deckungsgleich wird.
Kreuzprodukt – Herleitung
Die Herleitung des Kreuzprodukts bzw. der Formel zur Berechnung erfolgt anhand der genannten Bedingungen, insbesondere (1) und (3).
Eine vereinfachte Form der Herleitung, die lediglich auf der ersten Eigenschaft des Kreuzprodukts beruht, haben wir an anderer Stelle gezeigt.
Kreuzprodukt – Beispiel
Wir berechnen ein einfaches Beispiel, um die Rechenvorschrift zu üben. Gegeben seien die folgenden Vektoren:
Wir wenden auf diese beiden Vektoren die Regel zur Berechnung des Kreuzprodukts an:
An diesem Beispiel sehen wir, dass die oben genannten Eigenschaften durch den berechneten Vektor erfüllt sind: Die Vektoren und zeigen gerade in die Richtungen der - und -Achsen eines dreidimensionalen Koordinatensystems, der Vektor in Richtung der -Achse – sie stehen also alle im rechten Winkel zueinander. Dieses Koordinatensystem ist außerdem ein Rechtssystem. Die Länge des Vektors beträgt genau . Das entspricht der Fläche des von und aufgespannten Parallelogramms. Da die Vektoren und im rechten Winkel zueinander stehen, spannen sie gerade ein Quadrat mit Seitenlänge auf.
Ausblick – das lernst du nach Kreuzprodukt
Weiter geht es mit Linearkombinationen! Darauf aufbauend führen dich Vektorräume tiefer hinein in die faszinierende Welt der Vektorrechnung. Erfahre, wie das Kreuzprodukt zur Lösung realer Probleme beiträgt. Lerne weiter und erlebe Mathematik hautnah!
Zusammenfassung des Kreuzprodukts
- Das Kreuzprodukt ist eine Operation mit zwei Vektoren, welche einen dritten Vektor zum Ergebnis hat.
- Der Ergebnisvektor steht senkrecht auf den beiden Vektoren des Kreuzproduktes.
- Das Kreuzprodukt gilt nur im .
- Eine Herleitung der Formel des Kreuzproduktes ist möglich über den Sachverhalt, dass das Skalarprodukt zweier Vektoren null ist, wenn diese senkrecht zueinander stehen.
Häufig gestellte Fragen zum Thema Kreuzprodukt
Kreuzprodukt – Definition Übung
-
Definiere das Vektorprodukt.
-
Berechne das Vektorprodukt.
-
Prüfe, welcher Vektor orthogonal zu einem der vorgegebenen Vektoren ist.
-
Bestimme einen zu den beiden Vektoren senkrechten Vektor durch das Vektorprodukt.
-
Ergänze die Bedeutung des Vektorproduktes.
-
Berechne das Vektorprodukt der beiden Vektoren.
9.244
sofaheld-Level
6.600
vorgefertigte
Vokabeln
7.674
Lernvideos
37.121
Übungen
32.366
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
Crazy 🤪
Kurze Frage von meinen SuS: Wie hast du die Videos aufgenommen?
Du hast in dem Gleichungssystem nur 2 Gleichungen, aber 3 Variablen. Du kannst hier eine der drei Variablen frei wählen, da du das Gleichungssystem sonst nicht lösen kannst. In dem Fall ist es nicht wichtig, welche der Variablen du wählst. Du kannst dir einfach eine aussuchen. Man hätte also auch n1 oder n2 wählen können. Bei weiteren Fragen hilft dir auch gerne der Hausaufgaben-Chat, der Mo-Fr von 17-19 Uhr verfügbar ist.
Was bedeutet : Die Komponenten des Normalenvektors n1, n2 und n3 erfüllen eine Gleichungssystem mit zwei Gleichungen. ?
Warum ist n3 gleich 1? (at ca. 2:05)