Über 1,2 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Kommutativgesetz, Assoziativgesetz, Distributivgesetz

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.3 / 741 Bewertungen
Die Autor*innen
Avatar
Team Digital
Kommutativgesetz, Assoziativgesetz, Distributivgesetz
lernst du in der Unterstufe 1. Klasse - 2. Klasse

Grundlagen zum Thema Kommutativgesetz, Assoziativgesetz, Distributivgesetz

Kommutativgesetz, Assoziativgesetz und Distributivgesetz – Mathe

Der Bücherwurm Willi hat sich ein neues Buch ausgesucht. Eines über Kommutativgesetz, Assoziativgesetz und Distributivgesetz. Sehr gute Wahl Willi! Was diese Gesetze besagen und wie man sie anwenden kann, schauen wir uns im Folgenden gemeinsam an.

Kommutativgesetz – Erklärung

Das Kommutativgesetz wird auch Vertauschungsgesetz genannt. Für die Addition besagt es, dass man Summanden vertauschen darf, ohne dass sich das Ergebnis ändert.

Das heißt, dass wir zum Beispiel $6 + 3$ auch als $3 + 6$ schreiben können und trotzdem dasselbe Ergebnis erhalten.

$6 + 3 = 3 + 6 $

Beide Seiten ergeben $9$.

Das Kommutativgesetz gilt auch für die Multiplikation. Wie bei der Addition die Summanden, kann man bei der Multiplikation die Faktoren vertauschen.

$6 \cdot 3 = 3 \cdot 6$

Auf beiden Seiten erhalten wir das Ergebnis $18$.

Für die Subtraktion gilt das Kommutativgesetz nicht, denn:

$6 - 3 = 3$

$3 - 6 = -3$

Auch auf die Division kann das Vertauschungsgesetz nicht angewendet werden:

$6 : 3 = 2$

$3 : 6 = \frac{3}{6} = \frac{1}{2}$

Assoziativgesetz – Erklärung

Für die Addition besagt das Assoziativgesetz, dass man beim mehrfachen Addieren Klammern beliebig setzen, umsetzen oder auch weglassen kann. So ist zum Beispiel:

$(6 + 3) +2 = 6 + (3 + 2) = 6 + 3 + 2$

Berechnen wir die erste Summe und rechnen zuerst die Klammer, so erhalten wir $9 + 2$, das ergibt $11$. Dasselbe Ergebnis erhalten wir, wenn wir zunächst $3 + 2$ rechnen und dann $6$ addieren.

Das Assoziativgesetz gilt ebenso für die Multiplikation. Auch bei der Multiplikation können wir Klammern beliebig setzen und weglassen.

$(6 \cdot 3) \cdot 2 = 6 \cdot (3 \cdot 2) = 6 \cdot 3 \cdot 2$

Rechnen wir alle drei Terme aus, so erhalten wir immer $36$.

Für die Subtraktion gilt das Assoziativgesetz nicht. So ist:

$(6 - 3) - 2 = 3 - 2 = 1$

Rechnen wir jedoch:

$6 - (3 - 2) = 6 - 1 = 5$

Die beiden Ergebnisse stimmen nicht überein.

Auch für die Division gilt das Assoziativgesetz nicht.

$(6 : 3) : 2 = 2 : 2 = 1$

$6 : (3 : 2) = 6 : \frac{3}{2} = 4$

Diese beiden Ergebnisse stimmen ebenfalls nicht überein.


Distributivgesetz – Erklärung

Das Distributivgesetz erklärt, wie wir mit Klammern in Rechnungen umgehen, wenn verschiedene Rechenoperationen auftreten. Dazu schauen wir uns zunächst ein Beispiel an:

$(8 - 2) \cdot 3$

Hierbei haben wir innerhalb der Klammer eine Subtraktion und außerhalb der Klammer eine Multiplikation. Berechnen wir zuerst die Klammer und multiplizieren dann mit $3$, so erhalten wir $18$ als Ergebnis.

$(8 - 2) \cdot 3 = 6 \cdot 3 = 18$

Das Distributivgesetz besagt nun, dass wir die Zahlen in der Klammer zunächst mit dem Faktor, in diesem Fall $3$, multiplizieren können. Nachdem wir dann die Produkte ausgerechnet haben, subtrahieren wir und erhalten als Endergebnis ebenfalls $18$.

$(8 - 2) \cdot 3 = 8 \cdot 3 - 2 \cdot 3 = 24 - 6 = 18$

Wir können manche Rechnungen mithilfe des Distributivgesetzes vereinfachen und dann leichter im Kopf rechnen. So können wir Folgendes schreiben:

$54 \cdot 7 = (50 + 4) \cdot 7$

Dann rechnen wir:

$(50 + 4) \cdot 7 = 50 \cdot 7 + 4 \cdot 7 = 350 + 28 = 378$


Kommutativgesetz, Assoziativgesetz und Distributivgesetz – Beispiel

Wir wollen alle drei Gesetze an der folgenden Aufgabe üben:

$63 \cdot 7 + 73 + (12 + 7) + 3 \cdot (5 - 2)$

Das Assoziativgesetz besagt, dass Klammern in Summen beliebig gesetzt oder weggelassen werden können. Wir dürfen also die Klammern um die Summe $12 + 7$ einfach weglassen.

$63 \cdot 7 + 73 + 12 + 7 + 3 \cdot (5 - 2)$

Den letzten Teil des Terms können wir mithilfe des Distributivgesetzes auflösen und erhalten:

$3 \cdot (5 - 2) = 3 \cdot 5 - 3 \cdot 2 = 15 - 6 = 9$

Somit sieht die Aufgabe folgendermaßen aus:

$63 \cdot 7 + 73 + 12 + 7 + 9$

$63 \cdot 7$ können wir mithilfe des umgekehrten Distributivgesetzes umschreiben und erhalten:

$63 \cdot 7 = (60 + 3) \cdot 7 = 60 \cdot 7 + 3 \cdot 7 = 420 + 21 = 441$

Die Aufgabe lautet nun:

$441 + 73 + 12 + 7 + 9$

Wir können nun die Summanden mithilfe des Kommutativgesetzes vertauschen und so ordnen, dass es uns das Rechnen vereinfacht. So können wir $441$ und $9$ zusammenschreiben und mithilfe des Assoziativgesetzes Klammern setzen. Dies wird zu $450$ addiert. Ebenso können $73$ und $7$ zusammengeschrieben und Klammern gesetzt werden. Dies ergibt $80$.

$441 + 73 + 12 + 7 + 9 = (441 + 9) + (73 + 7) + 12 = 450 + 80 + 12$

Anschließend können wir von links nach rechts addieren und erhalten:

$450 + 80 + 12 = 542$

Zusammenfassung zu den Rechengesetzen

Die folgenden Stichpunkte fassen das Wichtigste aus den Definitionen des Kommutativgesetzes, des Assoziativgesetzes und des Distributivgesetzes noch einmal zusammen.

  • Das Kommutativgesetz besagt, dass man bei der Addition Summanden und bei der Multiplikation Faktoren vertauschen darf.
  • Das Assoziativgesetz besagt, dass man beim mehrfachen Addieren und Multiplizieren Klammern beliebig umsetzen oder weglassen darf.
  • Das Distributivgesetz besagt, dass eine Summe beziehungsweise Differenz mit einem Faktor multipliziert wird, indem man jeden Summanden beziehungsweise den Minuenden und Subtrahenden einzeln mit diesem Faktor multipliziert und die Produktwerte addiert beziehungsweise subtrahiert. Andersherum kann man das Rechnen mithilfe des Distributivgesetzes vereinfachen und dann leichter im Kopf rechnen.

Ergänzend zum Video findest du Übungen und Aufgaben zum Kommutativgesetz, Assoziativgesetz und Distributivgesetz auf dieser Seite.

Häufig gestellte Fragen zum Thema Kommutativgesetz, Assoziativgesetz, Distributivgesetz

Was sind die drei Rechengesetze?
Was ist der Unterschied zwischen Assoziativgesetz und Kommutativgesetz?
Was sind die Rechengesetze?
Welche Rechengesetze gibt es bei der Division?
Was ist der Unterschied zwischen Rechenregeln und Rechengesetzen?
Was bedeuten die verschiedenen Rechengesetze?
Welche Rechengesetze gibt es bei der Multiplikation?
Welche Rechengesetze hast du zur Multiplikation gelernt? Gib je ein Beispiel dazu an.
Welche Rechengesetze gelten für die Subtraktion?
Für welche Rechenarten gilt das Assoziativgesetz?
Welche Rechengesetze sind bei der Division nicht erlaubt?
Welche Rechengesetze gelten bei der Addition?
Wie viele Rechengesetze gibt es?

Transkript Kommutativgesetz, Assoziativgesetz, Distributivgesetz

Da hat Bücherwurm Willi ja ein schönes Gesetzbuch gefunden. Was diese Gesetze besagen und wie du sie anwenden kannst, lernst du in diesem Video zusammen mit Willi. Beginnen wir dabei mit dem Kommutativgesetz, welches auch Vertauschungsgesetz genannt wird. Für die Addition besagt es, dass man Summanden vertauschen darf. Das heißt, dass wir zum Beispiel 6+3 auch als 3+6 schreiben können und trotzdem dasselbe Ergebnis erhalten. Sowohl 6+3 als auch 3+6 ergeben 9. Das Kommutativgesetzt gilt übrigens auch für die Multiplikation. Wie auch bei der Addition, kann man die Faktoren vertauschen. Auf beiden Seiten erhalten wir das Ergebnis 18. Für die Subtraktion gilt das Kommutativgesetz aber nicht, denn 6 - 3 ist 3 und 3 - 6 ist -3. Ebenso gilt es nicht für die Division. Rechnen wir zum Beispiel 6 geteilt durch 3, so erhalten wir 2. Teilen wir aber 3 durch 6, erhalten wir einen Bruch. Das nächste Gesetz, durch das Willi der Bücherwurm sich frisst, heißt Assoziativgesetz. Für die Addition besagt es, dass man beim mehrfachen Addieren Klammern beliebig setzen, umsetzen oder auch weglassen kann. So ist in Klammern (6 + 3) + 2. Dasselbe wie 6 + in Klammern (3+ 2) oder auch 6+3+2. Berechnen wir die erste Summe und rechnen zuerst die Klammern und addieren dann 2, so erhalten wir 11. Dasselbe Ergebnis erhalten wir, wenn wir zunächst 3+2 rechnen und dann 6 addieren und ebenso, wenn wir von links nach rechts rechnen. Das Assoziativgesetz gilt ebenso für die Multiplikation. Auch bei der Multiplikation können wir Klammern beliebig setzen oder weglassen. Rechnen wir alle drei Terme aus so sehen wir, dass sich bei jedem Term am Ende das Ergebnis 36 ergibt. Für die Subtraktion gilt dies nicht. Rechnen wir zunächst 6 - 3 und subtrahieren dann 2, erhalten wir 1. Berechnen wir aber zuerst 3-2 und subtrahieren das Ergebnis dann von 6, so erhalten wir 5 als Endergebnis. Auch für die Division gilt das Assoziativgesetz nicht. Teilen wir 6 durch 3 und teilen dann dieses Ergebnis durch 2, so erhalten wir 1. Teilen wir aber zunächst 3 durch 2 und das dann durch 6, so erhalten wir 4. Das letzte Gesetz, durch das sich Willie frisst, heißt Distributivgesetz. Schauen wir uns das doch einmal an einem Beispiel an: In Klammern 8-2 mal 3. Hier hast du also innerhalb der Klammer eine Subtraktion und außerhalb der Klammer eine Multiplikation. Berechnen wir die Klammern zuerst, so erhalten wir 6 mal 3 und das sind 18. Das Distributivgesetz besagt nun, dass wir zunächst die Zahlen in der Klammer mit dem Faktor 3 multiplizieren können. Nachdem wir dann die Produkte ausgerechnet haben, subtrahieren wir und erhalten als Endergebnis also auch 18. Andersherum kann man das Rechnen mithilfe des Distributivgesetzes vereinfachen und dann leichter im Kopf rechnen. So können wir 54 mal 7 umschreiben zu in Klammern (50 +4) mal 7. Wir rechnen dann 50 mal 7 und 4 mal 7 und erhalten so das Endergebnis 378. Wenden wir diese drei Gesetze doch nun einmal an diesem Term an. Da das Assoziativgesetz besagt, dass Klammern in Summen beliebig gesetzt oder weggelassen werden können, können wir die Klammern hier einfach weglassen. Diesen Teil des Terms können wir mithilfe des Distributivgesetzes auflösen und erhalten 15- 6. Das sind 9. 63 mal 7 können wir mithilfe des umgekehrten Distributivgesetzes umschreiben und haben so in Klammern 60+3 mal 7 also 420 + 21 und das sind 441. Wir können die Summanden nun mithilfe des Kommutativgesetzes vertauschen und so ordnen, dass es uns das Rechnen vereinfacht. So können wir 441 und 9 zusammenschreiben und mithilfe des Assoziativgesetzes Klammern setzen. Dies können wir nun einfach zu 450 addieren. Außerdem können wir 73 und 7 zusammenschreiben, Klammern setzen und zu 80 addieren. Rechnen wir nun abschließend von links nach rechts, so erhalten wir 542. Fassen wir zusammen. Das Kommutativgesetz besagt, dass man bei der Addition Summanden und bei der Multiplikation Faktoren vertauschen darf. Das Assoziativgesetz besagt, dass man beim mehrfachen Addieren und Multiplizieren Klammern beliebig umsetzen oder weglassen darf. Das Distributivgesetz besagt folgendes: Eine Summe bzw. Differenz wird mit einem Faktor multipliziert, indem man jeden Summand bzw. Minuend und Subtrahend einzeln mit diesem Faktor multipliziert und die Produkte dann addiert bzw. subtrahiert. Anders herum kann man das Rechnen mithilfe des Distributivgesetzes vereinfachen und dann leichter im Kopf rechnen. Und Willi hat anscheinend alle Gesetze gut verinnerlicht.

98 Kommentare
98 Kommentare
  1. Sehr schöne Erklärung. Hat sehr geholfen.

    Von Mats, vor 4 Monaten
  2. Gut Erklärt

    Von Anna, vor 5 Monaten
  3. Diese Übungen sind komisch. Also die 4

    Von Cat cool magic glitzer, vor 5 Monaten
  4. Sehr gut hat mir sehr geholfen 🥰

    Von Stella, vor 6 Monaten
  5. Hat mir geholfen

    Von Karl Jonathan, vor 7 Monaten
Mehr Kommentare

Kommutativgesetz, Assoziativgesetz, Distributivgesetz Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kommutativgesetz, Assoziativgesetz, Distributivgesetz kannst du es wiederholen und üben.
  • Bestimme die korrekten Aussagen zu Kommutativgesetz, Assoziativgesetz und Distributivgesetz.

    Tipps

    Die Reihenfolge der Zahlen bei einer Addition ist nicht relevant.

    Es gilt zum Beispiel:

    $\begin{array}{ll} 6+3&=3+6 \\ 9&=9 \end{array}$

    Hier wurde das Distributivgesetz angewandt:

    $3 \cdot (4-2)=3 \cdot 4 + 3 \cdot (-2)= 12-6=6$

    Lösung

    Diese Aussagen sind falsch:

    • „Das Kommutativgesetz der Addition besagt, dass man die Summanden bei einer Addition durch andere, beliebige Zahlen austauschen kann.“
    Dieses Gesetz besagt, dass du die Summanden untereinander vertauschen kannst. Die Reihenfolge ist also nicht relevant. Hier siehst du ein Beispiel:

    $\begin{array}{ll} 5+2&=2+5 \\ 7&=7 \end{array}$

    • „Das Distributivgesetz gilt nicht für eine Subtraktion oder Division in der Klammer.“
    Das Distributivgesetz gilt immer, wenn ein Faktor mit einem Ausdruck in einer Klammer multipliziert wird. Ob es sich hier um eine Subtraktion oder Addition handelt, ist irrelevant. Hier siehst du die Anwendung des Distributivgesetzes:

    $5 \cdot (6-3)=5 \cdot 6 - 5 \cdot 3= 30-15=15$

    Ebenso könntest du rechnen:

    $5 \cdot (6-3)=5 \cdot 3= 15$

    $~$

    Diese Aussagen sind richtig:

    • „Das Kommutativgesetz gilt nicht für die Subtraktion und Division.“
    • „Bei einer reinen Multiplikation können Klammern beliebig gesetzt werden.“
    Das besagt das Assoziativgesetz. Es gilt auch für die Addition.

    $\begin{array}{ll} 5 \cdot (2 \cdot 3)&=(2 \cdot 5) \cdot 3\\ 5 \cdot 6&=10 \cdot 3\\ 30&= 30 \end{array}$

    • „Das Assoziativgesetz gilt nur für Addition und Multiplikation.“
  • Beschreibe die Verwendung des Kommutativ-, Assoziativ- und Distributivgesetzes.

    Tipps

    Das Kommutativgesetz gilt nicht für Subtraktion und Division.

    Da:

    $6-3=3$

    aber:

    $3-6=-3$

    So funktioniert das Distributivgesetz, wenn eine Summe in der Klammer steht:

    $(8+3)\cdot 2 = 8\cdot 2 + 3\cdot 2 =16+6=22$

    Das Assoziativgesetz kann nicht bei der Division angewandt werden, da zum Beispiel:

    $(36:6):3=6:3=2$

    aber:

    $36:(6:3)=36:2=18$

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Das Kommutativgesetz gilt für die Addition und Multiplikation. Es besagt, dass du die Reihenfolge der Summanden oder Faktoren vertauschen darfst. Also ist:

    $6+3=3+6$ und

    $6 \cdot 3=3 \cdot 6$“

    • Achtung: Das gilt nicht für die Subtraktion und Division!
    „Das Assoziativgesetz gilt für die Addition und Multiplikation. Wenn diese Rechenarten alleine vorkommen, darfst du Klammern beliebig setzen, oder weglassen. Also:

    $(6+3)+2=6+(3+2)=6+3+2$ und:

    $(6 \cdot 3) \cdot 2=6 \cdot( 3 \cdot 2)=6 \cdot 3 \cdot 2$“

    • Beachte, dass dies nicht für Mischformen gilt. Kommen also zum Beispiel Multiplikation und Addition in einem Ausdruck gemeinsam vor, kannst du hier die Klammern nicht beliebig setzen.
    „Das Distributivgesetz kannst du anwenden, wenn ein Faktor mit einem Ausdruck in einer Klammer multipliziert wird. In diesem Fall darfst du den Faktor auch zuerst einzeln mit den Zahlen in der Klammer multiplizieren. So erhältst du zum Beispiel:

    $(8-2)\cdot 2 = 8\cdot 2-2\cdot 2=16-4=12$“

    • Diesen Vorgang nennt man auch ausmultiplizieren.
  • Wende die Gesetze an.

    Tipps

    Die gelernten Gesetze können dir helfen zu erkennen, welche mathematischen Ausdrücke gleich sind. Mit dem Assoziativgesetz weißt du zum Beispiel, dass:

    • $1+(3+4)=(1+3)+4=8$
    Lösung

    Du kannst die Rechnungen zuordnen, indem du gelernten Gesetze anwendest.

    Hier kannst du das Assoziativgesetz anwenden (Klammern beliebig setzen):

    • $2+(4+2)=(2+4)+2=8$
    • $(2\cdot 2) \cdot 3=2\cdot (2 \cdot 3)=12$
    Hier kannst du das Distributivgesetz anwenden (Faktoren vor der Klammer mit allen Ausdrücken in der Klammer multiplizieren):

    • $2 \cdot (7-3)=2 \cdot 7- 3 \cdot 2=8$
    • $2 \cdot (9-2)=2 \cdot 9-2 \cdot 2=14$
    Hier kannst du das Kommutativgesetz anwenden (Vertauschen von Faktoren oder Summanden):

    • $8+1+3=1+8+3=12$
    • $7 \cdot 2=2\cdot 7=14$
  • Ermittle die Ergebnisse der Rechnungen.

    Tipps

    Verändere die Reihenfolge von Summanden, um deine Rechnung zu erleichtern.

    Lösung

    Du kannst die Rechnungen lösen, indem du sie mit den gelernten Gesetzen vereinfachst und anschließend berechnest.

    In fast allen Rechnungen werden Klammern weggelassen (Assoziativgesetz), die Reihenfolge von Summanden vertauscht (Kommutativgesetz) und Faktoren vor einer Klammer einzeln mit den Ausdrücken in der Klammer multipliziert (Distributivgesetz). Rechts siehst du, welches Gesetz angewendet wurde. So erhältst du:

    $\begin{array}{llr} 1 \cdot 2 + (3+6)-3+ 2 \cdot (6-3)&= 2+3+6-3+2 \cdot (6-3) &\| ~ \text{Assoziativgesetz} \\ &= 2+3+6-3+12-6 &\| ~ \text{Distributivgesetz}\\ &= 2+12+3-3+6-6 &\| ~ \text{Kommutativgesetz}\\ &=14 & \end{array}$

    $\begin{array}{llr} 3 \cdot (2-3) + (3+9)+ 1 \cdot 2 \cdot 3&= 6-9+(3+9)+6&\| ~ \text{Distributivgesetz}\\ &= 6-9+3+9+6&\| ~ \text{Assoziativgesetz}\\ &= 6+6+9-9+3&\| ~ \text{Kommutativgesetz}\\ &=15 \end{array}$

    $\begin{array}{llr} (6 \cdot 5) \cdot 3+1+9 -3 \cdot (3+5) &= 6 \cdot 5 \cdot 3+1+9-3 \cdot (3+5)&\| ~ \text{Assoziativgesetz}\\ &= 6 \cdot 5 \cdot 3+1+9-9-15&\| ~ \text{Distributivgesetz}\\ &= 90-15+1&\| ~ \text{Kommutativgesetz}\\ &=76 \end{array}$

    $\begin{array}{llr} (1+2)+7+7 \cdot (3-1)&=1+2+7+7 \cdot (3-1) &\| ~ \text{Assoziativgesetz}\\ &=1+2+7+21-7 &\| ~ \text{Distributivgesetz}\\ &=1+21+2+7-7&\| ~ \text{Kommutativgesetz} \\ &=24 \end{array}$

  • Gib an, welches Gesetz angewandt werden kann.

    Tipps

    Das Kommutativgesetz gilt für die Addition und Multiplikation. Kommen diese Rechenarten alleine vor, kannst du die Reihenfolge der Summanden oder Faktoren vertauschen.

    $\begin{array}{ccc} 1+2+3 &=& 1+3+2 \\ 6 &=& 6 \\ \\ \end{array}$

    $\begin{array}{ccc} 2+1+3 &=& 2+3+1 \\ 6 &=& 6 \\ \\ \end{array}$

    $\begin{array}{ccc} 3+1+2 &=& 3+2+1\\ 6 &=& 6 \end{array}$

    Das Assoziativgesetz gilt ebenfalls für die Addition und Multiplikation. Wenn diese Rechenarten allein vorkommen, darfst du Klammern beliebig setzen oder weglassen.

    $\begin{array}{ccccc} 1 \cdot (2 \cdot 3) &=& (1 \cdot 2) \cdot 3 &=& 1 \cdot 2 \cdot 3 \\ 1 \cdot 6 &=& 2 \cdot 3 &=& 2 \cdot 3 \\ 6 &=& 6 &=& 6 \end{array}$

    Lösung

    Das Kommutativgesetz gilt für die Addition und Multiplikation. Kommen diese Rechenarten alleine vor, kannst du die Reihenfolge der Summanden oder Faktoren vertauschen. Dieses Gesetz wurde hier angewandt:

    • $63 \cdot 7 =7 \cdot 63$
    • $6 \cdot 3 \cdot 2 =2 \cdot 3 \cdot 6$
    Das Assoziativgesetz gilt ebenfalls für die Addition und Multiplikation. Wenn diese Rechenarten alleine vorkommen, darfst du Klammern beliebig setzen oder weglassen. Hier wurde das Gesetz angewandt:

    • $73+(12+7)=73+12+7$
    • $6+(3+2)=(6+3)+2$
    Das Distributivgesetz kannst du anwenden, wenn ein Faktor mit einem Ausdruck in einer Klammer multipliziert wird. In diesem Fall darfst du den Faktor auch zuerst einzeln mit den Zahlen in der Klammer multiplizieren. Dieses Gesetz wurde hier angewandt:

    • $3 \cdot (5-2)=3 \cdot 5 + 3 \cdot (-2)$
    • $7 \cdot (60+3)=7 \cdot 60 + 7 \cdot 3$
    Hier wurde versucht das Kommutativgesetz auf die Division und Subtraktion anzuwenden. Das ist allerdings nicht möglich. Deshalb sind diese Rechnungen falsch:

    • $6-3=3-6$
    • $6 : 3=3 : 6$
  • Erschließe, wo die Gesetze richtig angewandt wurden.

    Tipps

    Mit den drei Gesetzen kannst du die Rechnungen vereinfachen und lösen. Allerdings ist es nicht immer sinnvoll die Gesetze anzuwenden. Überlege dir, welcher Rechenweg am effizientesten ist.

    Lösung

    Mit den drei Gesetzen kannst du die Rechnungen vereinfachen und lösen. Allerdings ist es nicht immer sinnvoll, die Gesetze anzuwenden. Überlege dir, welcher Rechenweg am effizientesten ist. Dann erhältst du, dass diese Rechnungen falsch sind:

    • $13-9+(15+5)+3 \cdot (3-5) = 16$
    So kannst du sie richtig lösen:

    $\begin{array}{llr} 13-9+(15+5)+3 \cdot (3-5) &=13-9+15+5+3 \cdot (3-5)&\| ~ \text{Assoziativgesetz} \\ &=13-9+15+5+9 -15 &\| ~ \text{Distributivgesetz} \\ &=13+5+15-15+9-9 &\| ~ \text{Kommutativgesetz} \\ &=18\\ \end{array}$

    • $(8 \cdot 2 ) \cdot 5 + 82 + 7 + 18 + 7 \cdot (10-1)=240$
    Diese Rechnung wird so richtig durchgeführt:

    $\begin{array}{llr} (8 \cdot 2 ) \cdot 5 + 82 + 7 + 18 + 7 \cdot (10-1) &=8 \cdot 2 \cdot 5+ 82 + 7 + 18 +7 \cdot (10-1)&\| ~ \text{Assoziativgesetz} \\ &=8 \cdot 2 \cdot 5+ 82 + 7 + 18 +70-7 &\| ~ \text{Distributivgesetz} \\ &=8 \cdot 10+ 82 +18 + 7-7 +70 &\| ~ \text{Kommutativgesetz} \\ &=80+100+70\\ &=250\\ \end{array}$

    Diese Rechnungen wurden korrekt gelöst:

    $\begin{array}{ll} 100-90+(3 \cdot 2) \cdot 5 + 10 \cdot (15-10)&= 100-90+3 \cdot 2 \cdot 5 + 150-100\\ &= 100-100+150-90+3 \cdot 10 \\ &=150- 90+30 \\ &=90 \end{array}$

    $\begin{array}{ll} 3 \cdot 3 \cdot 4 + 9 \cdot ( 4-2) + (18 + 1) +12&= 36 + 36-18 + 18 + 1 +12\\ &= 36 + 36+12+ 18-18 + 1 \\ &= 36 + 36+12 + 1 \\ &=85 \end{array}$

    $\begin{array}{ll} 5 \cdot 3 \cdot 2 - 3 \cdot 5 \cdot 2 + 100 -10 + 9 \cdot (12 -22)&=5 \cdot 2\cdot 3 - 5 \cdot 2 \cdot 3 + 100 -10 + 9 \cdot (-10)\\ &=100-10-90\\ &=0 \end{array}$