Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Innenwinkelsummen von Vielecken

Die Innenwinkelsumme von Vielecken wird durch die Formel (n2)180(n-2)\cdot 180^\circ berechnet. Dieses Konzept hilft bei der Bestimmung der Innenwinkelsumme für Vielecke mit unterschiedlicher Seitenanzahl. Entdecke anhand von Beispielen wie Dreiecken, Sechsecken und Siebenecken die vielfältigen Anwendungen dieser Formel! Interessiert? Vertiefe dein Verständnis in unserem Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Innenwinkelsummen von Vielecken

Was ist die Innenwinkelsumme eines Dreiecks?

1/5
Bereit für eine echte Prüfung?

Das Innenwinkelsumme Vieleck Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.3 / 103 Bewertungen
Die Autor*innen
Avatar
Team Digital
Innenwinkelsummen von Vielecken
lernst du in der Unterstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse

Grundlagen zum Thema Innenwinkelsummen von Vielecken

Was ist die Innenwinkelsumme von Vielecken?

Philgonia Eckstein macht eine Forschungsreise in Polygonien. Dort haben alle Lebewesen die Form von Vielecken. Philgonia möchte heute Spinnennetze erforschen. Dabei kann sie auf ihr Wissen aus dem Matheunterricht zur Innenwinkelsumme von Vielecken zurückgreifen. Ein Vieleck mit nn Ecken nennt man auch nn-Eck.

Für die Berechnung der Innenwinkelsumme eines Vielecks werden alle Innenwinkel des Vielecks zusammengerechnet. Anders gesagt: Es wird berechnet, wie viel Grad alle Innenwinkel zusammen in einem Vieleck haben.

Bei Dreiecken ist die Innenwinkelsumme immer 180180^\circ. Du kannst dir zur Wiederholung Philgonias Forschungserlebnis zu Innenwinkelsummen von Dreiecken anschauen.

Aber wie sieht es aus, wenn wir ein Vieleck mit mehr als drei Ecken betrachten?

Als erstes Beispiel schauen wir uns ein Sechseck an und messen mit einem Geodreieck alle innen liegenden Winkel:

Innenwinkel Sechseck

Wir addieren diese Winkel und erhalten als Summe 720720^\circ:

90+120+120+130+130+130=72090^\circ+120^\circ+120^\circ+130^\circ+130^\circ+130^\circ=720^\circ

Dieses Sechseck kann man in vier Dreiecke aufteilen:

Sechseck

Von Dreiecken wissen wir, dass sie immer eine Innenwinkelsumme von 180180^\circ haben, deswegen können wir für die Innenwinkelsumme des Sechsecks auch mithilfe der Dreiecke rechnen:

4180=7204\cdot 180^\circ = 720^\circ

Innenwinkelsumme von Vielecken – Herleitung

Genau so, wie wir es gerade beim Sechseck gesehen haben, können wir jedes beliebige Vieleck in Dreiecke aufteilen. Dazu nehmen wir uns eine beliebige Ecke des Vielecks und verbinden diese mit jeder anderen Ecke des Vielecks, indem wir jeweils eine Strecke einzeichnen. Daraus entstehen jeweils Dreiecke, außer bei der Verbindung mit den benachbarten Ecken. Für das Sechseck von oben wurde die linke untere Ecke durch die hier weiß markierten Strecken mit den anderen Ecken, außer den benachbarten Ecken, verbunden:

Sechseck aufgeteilt in Dreiecke

Durch jede Verbindungsstrecke wird ein Dreieck abgespalten. Die letzte Strecke, die eingezeichnet wird, teilt das verbleibende Viereck in zwei Dreiecke:

Sechseck aufgeteilt und zerlegt in Dreiecke

Insgesamt entstehen für das Sechseck vier Dreiecke. Verallgemeinert bedeutet das, es entstehen (n2)(n-2) Dreiecke, wenn man ein nn-Eck wie beschrieben aufteilt. Ein Viereck besteht also aus zwei Dreiecken, ein Fünfeck aus drei Dreiecken und so weiter.

Für die Innenwinkelsumme eines Vielecks mit nn Ecken ergibt sich also folgende Formel:

I=(n2)180I=(n-2)\cdot 180^\circ

Innenwinkelsumme von Vielecken – Beispiele

Wir schauen uns nun beispielhaft noch weitere Vielecke an und bestimmen deren Innenwinkelsumme.

Zunächst nehmen wir uns ein Siebeneck vor und wollen wieder unser Wissen über die Innenwinkelsumme von Dreiecken zu Hilfe nehmen. Deswegen teilen wir das Siebeneck wie folgt in Dreiecke auf:

Siebeneck aufgeteilt in Dreiecke

Das Siebeneck haben wir in sieben Dreiecke unterteilt, die alle eine Ecke in einem gemeinsamen Punkt innerhalb des Siebenecks haben. Wir addieren alle Innenwinkel dieser Dreiecke und erhalten:

7180=12607\cdot 180^\circ = 1260^\circ

Rechnen wir mit der oben hergeleiteten Formel erhalten wir aber:

I=(72)180=5180=900I=(7-2)\cdot 180^\circ = 5\cdot 180^\circ = 900^\circ.

Was haben wir im ersten Ansatz falsch gemacht? Die Winkel an dem Punkt, in dem die Dreiecke zusammenlaufen, tragen nicht zur Innenwinkelsumme bei. Die Winkel um diesen Punkt haben zusammen 360360^\circ:

Siebeneck aufgeteilt in Dreiecke mit gemeinsamem Punkt im Zentrum

Wir müssen also von den 12601260^\circ noch 360360^\circ abziehen:

7180360=9007\cdot 180^\circ – 360^\circ = 900^\circ

Nun haben wir dasselbe Ergebnis erhalten, das wir auch mit der Formel berechnet haben.

Als Nächstes schauen wir uns das folgende Fünfeck an:

Fuenfeck Innenwinkel bestimmen

Können wir die Innenwinkelsumme auch bestimmen, ohne das Fünfeck in Dreiecke zu unterteilen? Hierfür schauen wir einer Spinne zu, die auf den Kanten des Fünfecks krabbelt. Erreicht sie eine Ecke, muss sie eine Drehung um einen Winkel β\beta machen, damit sie auf der angrenzenden Kante weiterkrabbeln kann:

Fuenfeck Innenwinkel bestimmen.svg

Der Winkel β\beta und der angrenzende Innenwinkel α\alpha ergeben zusammen einen Winkel von 180180^\circ.

Diese Winkelpaare gibt es in jeder der fünf Ecken:

Fuenfeck Innenwinkel bestimmen durch Außenwinkel

Es gibt also fünf Winkelpaare von jeweils 180180^\circ:

α1+β1=180; α2+β2=180; α3+β3=180; α4+β4=180; α5+β5=180\alpha_1+\beta_1 = 180^\circ; ~ \alpha_2+\beta_2 = 180^\circ; ~ \alpha_3+\beta_3 = 180^\circ; ~ \alpha_4+\beta_4 = 180^\circ; ~ \alpha_5+\beta_5 = 180^\circ

Wenn die Spinne das ganze Fünfeck umrundet, hat sie sich auf ihrem Weg also um die fünf Winkel β1\beta_1, β2\beta_2, β3\beta_3, β4\beta_4 und β5\beta_5 gedreht. Außerdem schaut sie am Ende ihres Wegs wieder in die gleiche Richtung wie am Anfang, sie hat sich also insgesamt um 360360^\circ gedreht. Daraus ergibt sich Folgendes:

β1+β2+β3+β4+β5=360\beta_1+\beta_2+\beta_3+\beta_4+\beta_5 = 360^\circ

Nun bringen wir diese beiden Überlegungen zusammen: Die Summe der Winkelpaare ergibt 180180^\circ, ausgeschrieben ist das:

α1+β1+α2+β2+α3+β3+α4+β4+α5+β5=5180\alpha_1+\beta_1 + \alpha_2+\beta_2 + \alpha_3+\beta_3+\alpha_4+\beta_4 +\alpha_5+\beta_5 = 5\cdot 180^\circ

Auf der linken Seite dieser Gleichung können wir umsortieren:

α1+α2+α3+α4+α5+β1+β2+β3+β4+β5=5180\alpha_1+ \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5+\beta_1 +\beta_2+\beta_3+\beta_4 +\beta_5 = 5\cdot 180^\circ

Die Summe aller α\alpha-Winkel ist unsere gesuchte Innenwinkelsumme II. Die Summe aller β\beta-Winkel haben wir oben schon berechnet. Das können wir einsetzen:

I+360=5180I+360^\circ = 5\cdot 180^\circ

Diesen Term können wir umstellen, indem wir 360360^\circ subtrahieren und erhalten:

I=5180360=51802180=(52)180=3180=540I = 5\cdot 180^\circ - 360^\circ = 5\cdot 180^\circ - 2\cdot 180^\circ = (5-2)\cdot 180^\circ = 3\cdot 180^\circ =540^\circ

Auch für die Innenwinkelsumme dieses Fünfecks hat sich die Formel bestätigt, die wir bereits kennen. Wir haben nun drei verschiedene Erklärungen für die Berechnung der Innenwinkelsumme von Vielecken gesehen.

Ausblick – das lernst du nach Innenwinkelsummen von Dreiecken

Nachdem du dich mit der Innenwinkelsumme in Dreiecken beschäftigt hast, kannst du außerdem etwas über die Innenwinkelsumme in Vierecken oder Dreiecken lernen.

Wenn du das Gelernte direkt anwenden möchtest, schaue dir den Übungstext zum Thema an oder nutze die interaktiven Übungen, um dein Wissen zu vertiefen.

Teste dein Wissen zum Thema Innenwinkelsumme Vieleck!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Innenwinkelsumme in Vielecken – Zusammenfassung

Die Formel, um zu bestimmen, wie groß die Innenwinkelsumme in einem n-Eck, oder Vieleck, ist, lautet:

I=(n2)180I=(n-2)\cdot 180^\circ

Diese Formel kannst du nutzen, wenn du Aufgaben zur Bestimmung der Innenwinkelsumme von Vielecken lösen sollst. Für die folgenden n-Ecke ergeben sich die Innenwinkelsummen:

n-Eck 3 4 5 6 7
Innenwinkelsumme 180180^\circ 360360^\circ 540540^\circ 720720^\circ 900900^\circ

Transkript Innenwinkelsummen von Vielecken

Philgonia Eckstein ist auf einer Forschungsreise in Polygonien. Dort haben alle Lebewesen die Form von Vielecken: Gräser, Blumen, Wirbeltiere und Insekten haben die Formen von Drei-, Fünf-, Achtecken und vielen anderen Vielecken. Manche wollen sogar schon ein saurierartiges, regelmäßiges zweihundert-siebenundfünfzig-Eck gesehen haben. Philgonia bleibt aber erstmal bei Vielecken mit geringerer Eckenzahl: Sie erforscht heute die Spinnen und ihre wunderschönen Netze. Also muss Philgonia die Innenwinkelsumme von Vielecken bestimmen. Bei Dreiecken kennt Philgonia die Innenwinkelsumme schon: Die ist immer 180 Grad. Vielleicht hilft ihr das auch für die Vermessung der Vielecke. Philgonia nimmt ihr spezielles, antihaftbeschichtetes, spinnennetztaugliches Geodreieck und fängt bei diesem sechseckigen Spinnennetz an, die Innenwinkel zu messen. Sie misst 90 Grad, 120 Grad, 130 Grad, 130 Grad, 130 Grad und noch einmal 120 Grad. Zusammen ergibt das die Innenwinkelsumme von 720 Grad, ah ja! Ihr fällt aber auch sofort auf, dass sich dieses Netz aus 4 Dreiecken aufbaut. Weil jedes Dreieck eine Innenwinkelsumme von 180 Grad hat, haben diese 4 Dreiecke zusammen das Vierfache, also 720 Grad. Moment mal, so kann man das ja eigentlich bei jedem Vieleck machen. Allgemein lässt sich ein n-Eck immer in 'n minus 2' Dreiecke aufteilen. Zur Aufteilung eines Vielecks in Dreiecke sucht man sich einfach eine beliebige Ecke des Vielecks aus. Diese Ecke wird dann mit allen anderen Ecken des Vielecks durch Strecken verbunden außer mit den beiden benachbarten Ecken, denn dabei würden keine Dreiecke entstehen. Man zieht also n minus 3 Verbindungsstrecken und durch jede Strecke wird ein Dreieck abgetrennt. Nur bei der letzten Verbindungsstrecke entstehen 2 Dreiecke, weil dabei ein verbleibendes Viereck in zwei Dreiecke zerteilt wird. Insgesamt entstehen also n minus 2 Dreiecke. Ein 4-Eck besteht also aus 2 Dreiecken, ein 5-Eck aus 3 Dreiecken, ein 6-Eck aus 4 Dreiecken und so weiter. Für die Innenwinkelsumme I eines n-Ecks ergibt sich also folgende Formel: I ist gleich 'in Klammern n minus 2' mal 180 Grad. Aber Philgonia forscht schon fleißig weiter: Hier baut die nächste Spinne ihr siebeneckiges Netz. Dieses Netz ist in 7 Dreiecke – ein Dreieck pro Ecke – aufgeteilt. Dabei laufen die Dreiecke im Innern des Netzes in einem Punkt zusammen. Alle Innenwinkel der 7 Dreiecke haben zusammen 7 mal 180 Grad, das macht 1260 Grad. Lass uns das noch einmal mit unserer Formel nachprüfen: I ist gleich 'in Klammern n minus 2' mal 180 Grad ist gleich 7 minus 2 mal 180 Grad macht 5 mal 180 Grad, das sind 900 Grad. Was haben wir falsch gemacht? Die Winkel an dem Punkt, wo die Dreiecke zusammenlaufen, tragen ja gar nicht zur Innenwinkelsumme bei! Die Winkel um diesen Punkt haben zusammen genau 360 Grad. Wir müssen also von den 1260 Grad noch 360 Grad abziehen. Das macht 900 Grad. Nun haben wir dasselbe Ergebnis erhalten, das wir auch mit unserer Formel berechnet haben. Zur Sicherheit messen wir noch einmal nach: 90 Grad und 130 Grad und 140 Grad und 150 Grad und 130 Grad und 110 Grad und 150 Grad sind zusammen 900 Grad. Wir haben also definitiv das richtige Ergebnis. Und Philgonia forscht weiter: Hier baut die dritte Spinne ihr fünfeckiges Netz. Können wir die Innenwinkelsumme ermitteln, ohne das Fünfeck in Dreiecke aufzuteilen? Sieh mal, wie die Spinne ihr Fünfeck umrundet: An jeder Ecke muss sie sich ein Stück drehen – und zwar um einen Winkel Beta. Zusammen mit dem zugehörigen Innenwinkel Alpha bildet dieser einen Winkel von 180 Grad. Diese Winkelpaare gibt es in jeder der 5 Ecken: Immer dreht sich die Spinne um einen Winkel Beta, der zusammen mit dem entsprechenden Innenwinkel Alpha 180 Grad ergibt. Es gibt also 5 Winkelpaare von jeweils 180 Grad. Das ist die erste Überlegung. Während die Spinne einmal um ihr Netz herumkrabbelt, dreht sie sich um die Winkel Beta 1, Beta 2, Beta 3, Beta 4 und Beta 5. Zum Schluss schaut sie wieder in dieselbe Richtung wie am Anfang. Das heißt, sie hat sich um 360 Grad gedreht. Also gilt: Die Summe von 'Beta 1' bis 'Beta 5' ergibt 360 Grad. Das ist die zweite Überlegung. Jetzt verbinden wir die erste und die zweite Überlegung: Die Summe der Winkelpaare beträgt 5 mal 180 Grad. Wenn wir die Summe der 5 Winkelpaare aufschreiben: also 'Alpha 1' plus 'Beta 1' bis 'Alpha 5' plus 'Beta 5', dann können wir diese Summe ein bisschen umsortieren, die Alpha-Winkel zusammenfassen und die Beta-Winkel zusammenfassen. Die Summe aller Alpha-Winkel ist unsere Innenwinkelsumme I. Die Summe aller Beta-winkel ist 360 Grad, das können wir einsetzen. Es ist also 5 mal 180 Grad gleich I plus 360 Grad. 360 Grad ist 2 mal 180 Grad. Jetzt müssen wir nur noch umstellen und erhalten so: I ist gleich 5 minus 2 mal 180 Grad. Ergibt 540 Grad. Wir haben also auch für die Innenwinkelsumme dieses Spinnennetzes die Formel erhalten, die wir bereits kennen. Während Philgonia weitere Spinnennetze erforscht, fassen wir zusammen: Die Innenwinkelsumme eines N-ecks berechnet sich nach der Formel I ist gleich 'in Klammern n minus 2' mal 180 Grad. Bei einem Dreieck ergibt das beispielsweise 180 Grad, bei einem Viereck 360 Grad, bei einem Fünfeck 540 Grad, bei einem Sechseck 720 Grad und bei einem Siebeneck 900 Grad. Philgonia ist sehr stolz, dass sie nun eine Formel für die Innenwinkel der Spinnennetze gefunden hat. Die spinnen, die Spinnen!

18 Kommentare
  1. Super Duper Dankeschön😃😃😃😃😃😃😃😃

    Von Lu, vor 5 Monaten
  2. Tolles Video :)

    Von Gnömli, vor etwa einem Jahr
  3. Super Ende👍

    Von Liam, vor etwa einem Jahr
  4. Super Video ihr habt euch sehr viel Mühe gegeben 👍

    Von Mathea , vor etwa 2 Jahren
  5. Danke für das Video habe das Thema jetzt endlich verstanden

    Von Tamina, vor etwa 2 Jahren
Mehr Kommentare

Innenwinkelsummen von Vielecken Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Innenwinkelsummen von Vielecken kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.226

sofaheld-Level

6.600

vorgefertigte
Vokabeln

7.663

Lernvideos

37.087

Übungen

32.336

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden