Grundbegriffe der Statistik: Merkmal, Merkmalsträger und Grundgesamtheit
- Merkmal, Merkmalsträger, Merkmalsausprägung und Grundgesamtheit
- Grundbegriffe der Statistik
- Was ist ein Merkmal? – Definition
- Was ist eine Merkmalsausprägung? – Definition
- Was ist ein Merkmalsträger? – Definition
- Was ist eine Grundgesamtheit?– Definition
- Welche Grundgesamtheiten gibt es?
- Zusammenfassung – Grundbegriffe der Statistik

4.400
sofaheld-Level
6.572
vorgefertigte
Vokabeln
8.831
Lernvideos
38.428
Übungen
34.564
Arbeitsblätter
24h
Hilfe von Lehrer*
innen

Grundlagen zum Thema Grundbegriffe der Statistik: Merkmal, Merkmalsträger und Grundgesamtheit
Merkmal, Merkmalsträger, Merkmalsausprägung und Grundgesamtheit
Bei statistischen Untersuchungen begegnen uns häufig verschiedene Objekte, die wir beschreiben wollen. Dazu verwenden wir in der Mathematik die Begriffe Merkmal, Merkmalsausprägung, Merkmalsträger und Grundgesamtheit.
Grundbegriffe der Statistik
Im folgenden Abschnitt schauen wir uns die Definitionen einiger Grundbegriffe der statistischen Erhebung anhand von Beispielen genauer an.
Was ist ein Merkmal? – Definition
Wir betrachten zunächst ein Beispiel zum Begriff Merkmal: Wir haben einen Korb voller verschiedenfarbiger Bälle. Wählen wir einen der Bälle aus, können wir zum Beispiel nach seiner Farbe fragen. Das Merkmal ist das, wonach wir fragen – in diesem Beispiel also die Farbe. Dies ist die Definition des Merkmals.
Was ist eine Merkmalsausprägung? – Definition
Wir betrachten das gleiche Beispiel zur Merkmalsausprägung: Wir untersuchen wieder den Korb verschiedenfarbiger Bälle und fragen nach der Farbe. Eine Definition der Merkmalsausprägung besagt: Merkmalsausprägungen sind die Eigenschaften, die die ausgewählten Dinge haben können. In unserem Fall wären die Merkmalsausprägungen rot, gelb, blau und grün.
Der Unterschied zwischen Merkmal und Merkmalsausprägungen besteht also darin, dass das Merkmal der Oberbegriff für die Merkmalsausprägungen ist.
Was ist ein Merkmalsträger? – Definition
Für eine Definition des Merkmalsträgers betrachten wir wieder das Beispiel der Bälle. Die Merkmalsträger sind die Dinge, die ein Merkmal haben. Was bedeutet Merkmalsträger also bei unserem Beispiel? Jeder einzelne Ball ist ein Merkmalsträger..
Was ist eine Grundgesamtheit?– Definition
Wir wollen nun die Grundgesamtheit mathematisch definieren. Die Gesamtheit aller Objekte oder Individuen, aus denen wir auswählen, um dann nach einem Merkmal zu unterscheiden, ist die Grundgesamtheit oder Grundmenge. Kurz zusammengefasst bedeutet das: Die Grundgesamtheit (oder Grundmenge) ist die Gesamtheit aller Merkmalsträger. In unserem Beispiel ist sie also die Menge aller Bälle, die im Korb sind.
Welche Grundgesamtheiten gibt es?
Nun stellt sich die Frage, wie wir die Grundgesamtheit bestimmen können. Dabei gibt es nicht die Grundgesamtheit. Vielmehr müssen wir uns, abhängig davon, welche Merkmalsausprägung wir untersuchen, fragen: Was ist hier die Grundgesamtheit? Wollen wir zum Beispiel eine Statistik dazu aufstellen, wie viele Wörter in einem Text wir kennen und verstehen, dann wird unsere Stichprobe aus einzelnen Wörtern des Textes bestehen. Die Grundgesamtheit, aus der wir diese Wörter auswählen, sind alle Wörter des Textes. Wenn wir jetzt für denselben Text wissen wollen, aus wie vielen Wörtern die Sätze bestehen, so umfasst unsere Stichprobe einige Sätze aus dem Text. Die Grundmenge, aus der wir diese Sätze auswählen, umfasst alle Sätze des Textes.
Die Grundgesamtheit könnte hier als Wörter im Text oder als Sätze im Text definiert werden.
Zusammenfassung – Grundbegriffe der Statistik
In der Statistik bezeichnet die Grundgesamtheit (oder Grundmenge) die Menge, aus der wir eine Stichprobe auswählen. Wie die Grundgesamtheit genau aussieht, ist dabei immer von der Fragestellung abhängig. Die Grundgesamtheit setzt sich aus allen Merkmalsträgern zusammen, die jeweils eine Merkmalsausprägung zu dem betrachteten Merkmal aufweisen. Zusätzlich zum Text und dem Video findest du hier auf der Seite noch Übungen zum Thema Grundbegriffe der Statistik. Dort kannst du dein Wissen gleich testen.
Grundbegriffe der Statistik: Merkmal, Merkmalsträger und Grundgesamtheit Übung
-
Definiere die Fachbegriffe.
TippsStatistische Erhebungen haben das Ziel Strukturen und Gesetzmäßigkeiten in Daten sichtbar zu machen.
Überlege, was nötig ist, um einen bestimmten Aspekt zu analysieren.
Häufig wird aufgrund der großen Menge der relevanten Personen oder Objekte eine Stichprobe betrachtet.
LösungIn dieser Aufgabe sollen die Grundbegriffe der Statistik zusammenfassend definiert werden.
Die statistische Erhebung bezeichnet das Sammeln von Daten unter einer bestimmten Fragestellung. Ihr Ziel ist es, Massendaten zu reduzieren, um Gesetzmäßigkeiten und Strukturen sichtbar zu machen. Die Daten können zum Beispiel durch eine Zählung, eine Messung oder eine Befragung gewonnen werden.
Ein Beispiel hierfür ist: "Wie zufrieden sind die Zuschauer*innen mit dem Lernvideo?"
Die Grundgesamtheit (Grundmenge) bezeichnet alle Personen oder Objekte, die untersucht werden sollen. Sie setzt sich beispielsweise aus Personen oder Objekten zusammen, die auch "statistische Einheiten" genannt werden. Es ist wichtig, dass klar festgelegt wird, wer oder was dazugehört.
In unserem Beispiel umfasst die Grundgesamtheit alle Zuschauer*innen.
Da eine Grundgesamtheit oft auch sehr groß sein kann, wird häufig für die Untersuchung eine Stichprobe betrachtet. Diese bezeichnet den Teil der Grundgesamtheit, der letztendlich tatsächlich untersucht (bspw. befragt) wird.
Da es sehr viele Zuschauer*innen gibt, wird ein bestimmter Teil von Ihnen in die Erhebung einbezogen.
Zum Beantworten der festgelegten Fragestellung der statistischen Erhebung, wird in Hinblick auf die Stichprobe ein Merkmal festgelegt, welches untersucht werden soll.
Uns interessiert die Zufriedenheit unserer Stichprobe.
Dieses Merkmal besitzen alle Merkmalsträger in einer bestimmten, zu erforschenden, Ausprägung. Der Begriff bezeichnet also jede einzelne Person oder jedes einzelne Objekt (jede einzelne statistische Einheit).
Jede*r einzelne Zuschauer*in ist für unsere Erhebung ein Merkmalsträger und einzeln relevant für unsere Auswertung.
Untersucht wird nun, welche Merkmalsausprägung die einzelnen Merkmalsträger aufweisen. Das heißt, wie sie in Hinblick auf das Merkmal beschaffen sind.
Jeder Merkmalsträger (jede*r einzelne Zuschauer*in) bewertet das Video und erreicht mit der Vergabe von Sternen im Star-Rating oder aber auch durch keine Angabe eine genaue Merkmalsausprägung.
-
Gib mögliche Beispiele für die Grundbegriffe der statistischen Erhebung an.
TippsOrientiere dich beim Einsetzen der Fachbegriffe und Beispiele an den schon ausgefüllten Positionen.
Die Grundgesamtheit bezeichnet alle Personen oder Objekte, die untersucht werden sollen.
Das Merkmal bezeichnet den Aspekt, der untersucht werden soll. Überlege, welcher der Begriffe eine Untersuchung ermöglicht.
LösungIn dieser Aufgabe sollen Beispiele den Grundbegriffen der statistischen Erhebung zugeordnet werden. Hierbei ist es hilfreich, sich daran zu erinnern, dass die Inhalte der Fachbegriffe von links nach rechts immer genauer werden.
Während die Grundgesamtheit alle Personen oder Objekte, die untersucht werden sollen bezeichnet, legt das Merkmal fest, was genau bei jedem einzelnen Merkmalsträger untersucht werden soll. Jede einzelne Person kann eine bestimmte Merkmalsausprägung verkörpern.
Bei der Untersuchung der Zuschauer*innen soll die Zufriedenheit analysiert werden. Hierfür kann jede*r einzelne Zuschauer*in ein Star-Rating von Sternen abgeben.
Für die Mensa jeder Schule kann es relevant sein, welche Ernährungsform die Schüler*innen haben, damit das Essensangebot darauf ausgerichtet werden kann. In einer Erhebung unter allen Schüler*innen wird demnach die Ernährungsform analysiert. Jede*r einzelne Schüler*in kann beispielsweise Mischkost, vegane Ernährung oder weiteres angeben.
Zusammengefasst ergibt sich folgende tabellarische Darstellung der Fachbegriffe und Beispiele:
$\begin{array}{|c|c|c|c|} \hline \textbf{Grundgesamtheit} & \textbf{Merkmal} & \textbf{Merkmalsträger} & \textbf{Merkmalsausprägung}\\ \hline \text{alle} & \text{Zufriedenheit } & \text{einzelne*r} & \text{Sternenangabe} \\ \text{Zuschauer*innen} & \text{mit dem Video} & \text{Zuschauer*in} & \\ \hline \text{alle} & \text{Ernährungsform} & \text{einzelne*r} & \text{Mischkost, } \\ \text{Schüler*innen} & & \text{Schüler*in} & \text{vegane Ernährung, ...} \\ \hline \end{array}$
-
Charakterisiere die statistische Erhebung.
TippsDie Grundbegriffe haben jeweils eine unterschiedliche Anzahl an Beispielen, die ihnen zugeordnet werden.
Überlege, welches Merkmal untersucht wird.
Überlege, wer als einzelne statistische Einheit ein Merkmalsträger dieser Untersuchung ist.
Spielaktionen in einem Fußballspiel sind zum Beispiel Fehlpässe, Ballkontakte, Flanken und gelbe Karten.
LösungIn dieser Aufgabe soll eine statistische Erhebung der wichtigsten Spielaktion eines Fußballspiels in einem Spiel charakterisiert werden. Hierfür muss den Fachbegriffen der richtige Aspekt der Erhebung zugeordnet werden.
Die Grundgesamtheit beinhaltet in diesem Kontext alle Spieler der deutschen Nationalmannschaft. Jeder einzeln angegebene Spieler ist ein Merkmalsträger und soll im Hinblick auf seine Spielaktionen analysiert werden. Als Merkmalsausprägungen sind in diesem Beispiel die möglichen Spielaktionen (Torschüsse, Eckbälle, Flanken und Fouls) den Merkmalsträgern zuzuordnen.
In einer Tabelle kann die Erhebung folgendermaßen dargestellt werden: $\begin{array}{|c|c|c|c|} \hline \text{Grundgesamtheit} & \text{Merkmal} & \text{Merkmalsträger} & \text{Merkmalsausprägung}\\ \hline \text{alle Spieler} & \text{Spielaktionen} & \text{Spieler: Timo Werner} & \text{Flanke} \\ &&\text{Spieler: Mario Götze} & \text{Foulspiel} \\ &&\text{Spieler: Matthias Ginther} & \text{Troschuss} \\ && & \text{Eckball} \\ \hline \end{array}$
-
Beschreibe die statistische Erhebung.
TippsEine statistische Erhebung erfasst im Detail das, was ihre Fragestellung erfragt.
Als Merkmalsträger zählt jede einzelne statistische Einheit.
Drei Aussagen sind wahr.
LösungIn dieser Aufgabe soll eine statistische Erhebung beschrieben werden. Wir können uns hierbei gut an der zugrundeliegenden Fragestellung orientieren. Diese lautet:
"Wie viele Personen, die älter als $10$ Jahre sind, schauen weltweit die Fußball-WM?"
Die Grundgesamtheit beinhaltet alle Personen, die Teil der Erhebung sind. In diesem Beispiel sind das alle Menschen über $10$ Jahren. Jede einzelne Person über $10$ Jahren ist demnach ein Merkmalsträger für den das Merkmal untersucht werden soll, ob die WM geschaut wird oder nicht.
In einer Tabelle kann die Erhebung folgendermaßen dargestellt werden: $\begin{array}{|c|c|c|c|} \hline \text{Grundgesamtheit} & \text{Merkmal} & \text{Merkmalsträger} & \text{Merkmalsausprägung}\\ \hline \text{alle Personen} & \text{Schauen der} & \text{einzelne Person} & \text{WM geschaut} \\ \text{über $10$ Jahren} & \text{Fußball-WM} & \text{über $10$ Jahre} & \text {oder nicht geschaut} \\ \hline \end{array}$
Für unsere Aussagen bedeutet das:
1) Die Grundgesamtheit beinhaltet alle Menschen über $10$ Jahren.
Die Aussage ist wahr, weil untersucht werden soll, wie viele Personen, die älter als $10$ Jahre sind, weltweit die Fußball-WM schauen.
2) Die Grundgesamtheit beinhaltet nur deutsche Menschen über $10$ Jahren.
Die Aussage ist falsch, weil die Erhebung weltweit ausgelegt ist.
3) Das Alter der Personen spielt für die Grundgesamtheit keine Rolle.
Die Aussage ist falsch, weil nur Personen über $10$ Jahren zur Grundgesamtheit gehören.
4) Jede einzelne Person über $10$ Jahren ist ein Merkmalsträger.
Die Aussage ist wahr, weil für jede einzelne Person über $10$ Jahren relevant ist, ob die Fußball-WM geschaut wird.
5) Familien zählen gemeinsam als Merkmalsträger.
Die Aussage ist falsch, weil jede einzelne Person über $10$ Jahren relevant ist.
6) Als Merkmalsausprägung wird erfasst, ob die Personen Fernsehen schauen.
Die Aussage ist falsch, weil nicht untersucht wird, ob die Personen allgemein Fernsehen schauen. Es steht im Fokus, ob sie die Fußball-WM gesehen haben.
7) Als Merkmalsausprägung wird erfasst, ob die Personen gerne Fußball schauen.
Die Aussage ist falsch, weil nicht untersucht wird, ob die Personen allgemein gerne Fußball schauen. Es steht im Fokus, ob sie die Fußball-WM gesehen haben.
8) Als Merkmalsausprägung wird erfasst, ob die Personen Spiele der Fußball-WM schauen.
Die Aussage ist wahr, weil untersucht wird, ob die Personen die Fußball-WM schauen.
-
Nenne die Fachbegriffe zu den Beispielen.
TippsDie Grundgesamtheit bezeichnet alle Personen oder Objekte, die untersucht werden sollen.
Werden beispielsweise die Farben von Autos in Deutschland untersucht, beinhaltet die Grundgesamtheit alle Autos in Deutschland.
Das Merkmal bezeichnet den Aspekt, der untersucht werden soll. Er wird durch Merkmalsausprägungen genauer bestimmt.
Werden beispielsweise die Farben von Autos in Deutschland untersucht, ist das Merkmal die Autofarbe. Merkmalsausprägungen wären dann zum Beispiel Schwarz, Rot, Grau, Blau, ... .
LösungIn dieser Aufgabe sollen die Grundbegriffe der statistischen Erhebung richtig den Beispielen zugeordnet werden. Hierbei wird deutlich, dass die Inhalte der Fachbegriffe von links nach rechts immer detaillierter werden.
Während die Grundgesamtheit alle Personen oder Objekte, die untersucht werden sollen bezeichnet, legt das Merkmal fest, was genau bei jedem einzelnen Merkmalsträger untersucht werden soll. Jede einzelne Person / jedes einzelne Objekt kann eine bestimmte Merkmalsausprägung verkörpern.
Die richtige Reihenfolge der Begriffe ist: $\begin{array}{|c|c|c|c|} \hline \text{Grundgesamtheit} & \text{Merkmal} & \text{Merkmalsträger} & \text{Merkmalsausprägung}\\ \hline \end{array}$
Die Zuordnung zu den Beispielen siehst du in dem Bild.
-
Ermittle die Bestandteile der statistischen Erhebung.
TippsAcht Felder müssen markiert werden.
Versuche die Erhebung in einer Tabelle darzustellen, um herauszufinden, welche Informationen wichtig sind:
$\begin{array}{|c|c|c|c|} \hline \text{Grundgesamtheit} & \text{Merkmal} & \text{Merkmalsträger} & \text{Merkmals-}\\ & & \ & \text{ausprägung}\\ \hline ?& ?& ? & ? \\ \hline \end{array}$
Achte darauf, die Aspekte so genau wie möglich zu bestimmen.
Werden beispielsweise die Farben von Autos in Deutschland untersucht, beinhaltet die Grundgesamtheit alle Autos in Deutschland. Alle Autos wäre hier nicht die richtige Bezeichnung.
$\begin{array}{|c|c|c|c|} \hline \text{Grundgesamtheit} & \text{Merkmal} & \text{Merkmalsträger} & \text{Merkmals-}\\ & & \ & \text{ausprägung}\\ \hline \text{alle Autos in } & & & \\ \text{Deutschland} & ?& ? & ? \\ \hline \end{array}$
Auch würden beispielsweise die Farben von Motorrädern in einer Erhebung zu Autorfarben keine Rolle spielen.
LösungIn dieser Aufgabe sollen wir die Informationen nutzen, um die Inhalte einer statistische Erhebung zu kennzeichnen.
Während die Grundgesamtheit alle Personen oder Objekte, die untersucht werden sollen bezeichnet, legt das Merkmal fest, was genau bei jedem einzelnen Merkmalsträger untersucht werden soll. Jede einzelne Person / jedes einzelne Objekt kann eine bestimmte Merkmalsausprägung verkörpern.
In der statistischen Erhebung von Theas Klasse ist die ganze Klasse die Grundgesamtheit. ("Alle" wäre ein zu allgemeiner Begriff für die Grundgesamtheit.)
Es wird untersucht, was die Lieblings-Autogrammkarten von Fußballspieler*innen der Kinder sind. Jedes einzelne Kind als Merkmalsträger kann hierbei eine der Merkmalsausprägungen (Timo Werner, Mario Götze, Alexandra Popp oder Lea Schüller bzw. keine Lieblings-Autogrammkarte) besitzen.
Dass die Kinder auch Autogrammkarten von Tennisspieler*innen besitzen, ist für unsere Erhebung nicht relevant, da sich diese nur auf die Fußballautogrammkarten bezieht.
Aus den Informationen kann folgende Übersicht zur Erhebung erstellt werden:
$\begin{array}{|c|c|c|c|} \hline \color{#99FF32}{\text{Grundgesamtheit}} & \color{#F3DB00}{\text{Merkmal}} & \color{#66D8FF}{\text{Merkmalsträger} }& \color{#FF66FF}{\text{Merkmalsausprägung}}\\ \hline \text{Klasse von Thea} & \text{Autogrammkarten von} & \text{jedes einzelne} & \text{Timo Werner,} \\ & \text{Fußballspieler*innen} & \text{Kind der Klasse} & \text{Mario Götze,} \\ & & & \text{Alexandra Popp,} \\ & & & \text{Lea Schüller,} \\ & & & \text{keine Autogrammkarte} \\ \hline \end{array}$
Richtig markiert ist der Text folgendermaßen:
In der $\color{#99FF32}{\text{Klasse von Thea}}$ werden fleißig $\color{#F3DB00}{\text{Autogrammkarten von Fußballspieler*innen}}$ gesammelt. Deshalb möchte Thea eine statistische Erhebung zu den Lieblings-Autogrammkarten von Fußballspieler*innen machen.
$\color{#66D8FF}{\text{Jedes einzelne Kind der Klasse}}$ hat nur Karten von $\color{#FF66FF}{\text{Timo Werner}}$, $\color{#FF66FF}{\text{Mario Götze}}$, $\color{#FF66FF}{\text{Alexandra Popp}}$ und $\color{#FF66FF}{\text{Lea Schüller}}$.
Thea und Timo haben außerdem Autogrammkarten von Tennisspieler*innen. Besonders toll finden sie die von Boris Becker, Julia Görges, Steffi Graf und Philipp Kohlschreiber.
Manche Kinder sammeln gar nicht und haben deshalb $\color{#FF66FF}{\text{keine Lieblings-Autogrammkarte}}$.
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Rechteck
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Was ist eine Viertelstunde
- Prisma
- Mitternachtsformel
- Grundrechenarten Begriffe
- Dreiecksarten
- Quader
- Satz des Pythagoras
- Dreieck Grundschule
- Kreis
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen in Worten schreiben
- Meter
- Orthogonalität
- Schriftlich multiplizieren
- Brüche multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen berechnen
- Brüche addieren
- Kongruenz
- Exponentialfunktion
- Scheitelpunktform
- Logarithmus
- Erwartungswert
- Skalarprodukt
- Primfaktorzerlegung
- Quadratische Ergänzung
- Zinseszins
- Geradengleichung aus zwei Punkten bestimmen
- Sinusfunktion
- Natürliche Zahlen
- Brüche dividieren