Flächen vergleichen

-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
-
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
-
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
Grundlagen zum Thema Flächen vergleichen
Wie können wir Flächen vergleichen?
In diesem Video probieren Peggy und Kappu leckere Pralinen. Sie stellen fest, dass da wo in der Schachtel keine Pralinen mehr sind, unterschiedliche Flächen entstanden sind.
Aber wie können wir die Flächen nun miteinander vergleichen? Dabei helfen uns Einheitsquadrate. Ein Einheitsquadrat kann zum Beispiel ein Zentimeterquadrat oder ein Meterquadrat sein. In diesem Video rechnen wir mit Zentimeterquadraten.
Du weißt nach dem Video, dass ein Zentimeterquadrat eine Fläche von 1 cm² hat. Das sind genau vier Kästchen in deinem Matheheft.* Und du erfährst, dass du halbe Zentimeterquadrate zu ganzen zusammensetzen kannst.
Hast du alle Zentimeterquadrate einer Fläche zusammengerechnet, kannst du die Flächengröße in cm² angeben und sie so mit einer anderen Fläche vergleichen.
*Manchmal wird im Matheheft auch nur EIN kleines Kästchen für ein Einheitsquadrat verwendet. Wir bestimmen den Flächeninhalt heute mal zentimetergenau.
Transkript Flächen vergleichen
„Mhhmmm, was hat Kappu denn da geschenkt bekommen? Wie lecker, Pralinen“ und sogar in zwei verschiedenen Geschmacksrichtungen! Selbst Peggy darf probieren. Wie lieb von dir, Kappu! Jetzt wird getauscht, damit jeder mal von der anderen Sorte naschen kann. Dort, wo die Pralinen fehlen, kannst du zwei unterschiedliche Flächen sehen. Ob sie wohl gleich groß sind? Um das herauszufinden, können wir „Flächen vergleichen“. Bist du bereit? Damit wir Flächen miteinander vergleichen können, hilft uns das Einheitsquadrat. Ein Einheitsquadrat kann zum Beispiel ein Zentimeterquadrat oder ein Meterquadrat sein. Wir schauen uns jetzt mal das Zentimeterquadrat etwas genauer an. Wie groß der Flächeninhalt von einem Zentimeterquadrat ist, können wir am besten auf kariertem Papier erkennen. Oder direkt in deinem Matheheft: Manchmal wird dafür im Matheheft auch nur ein kleines Kästchen verwendet. Wir bestimmen den Flächeninhalt jetzt aber mal zentimetergenau. Schau mal hier: vier kleine Quadrate ergeben ein Zentimeterquadrat. Jede Seite des Zentimeterquadrats ist ein Zentimeter lang. Du kannst das ja mal nach diesem Video überprüfen. Der Flächeninhalt eines Zentimeterquadrats ist also ein Zentimeter hoch zwei. Oder ein Quadratzentimeter. Denn ein mal eins ist ein. Und Zentimeter mal Zentimeter sind Zentimeter hoch zwei. Jetzt haben wir alles, damit wir zwei Flächen miteinander vergleichen können: Schauen wir uns erstmal diese Fläche an und füllen sie mit den Zentimeterquadraten aus. Insgesamt sind das eins, zwei, drei, vier, fünf Zentimeterquadrate. In Quadratzentimeter heißt das dann fünf Zentimeter hoch zwei, also fünf Quadratzentimeter. Weiter geht es mit der zweiten Fläche. Wir füllen sie wieder mit eins, zwei, drei, vier Zentimeterquadraten aus. Aber was machen wir nun mit den halben Zentimeterquadraten? Sie sehen aus wie zwei Dreiecke. Wir setzen sie wieder zu einem ganzen Zentimeterquadrat zusammen. Also ist diese Fläche auch fünf Quadratzentimeter groß. Denn vier plus das zusammengesetzte Zentimeterquadrat sind fünf. Die beiden Flächen sind gleichgroß, obwohl sie unterschiedlich aussehen. Was machen eigentlich Kappu und Peggy? Ob sie schon alle Pralinen verputzt haben? Bevor wir uns das anschauen, lass uns doch kurz zusammenfassen, was du heute gelernt hat. Du hast heute gelernt, wie man Flächen miteinander vergleichen kann. Du weißt, dass die Größe einer Fläche der Flächeninhalt ist. Den kannst du mit Einheitsquadraten bestimmen. Du weißt, dass die Seitenlänge eines Einheitsquadrats eine bestimmte Einheit lang ist. Das kann zum Beispiel Zentimeter oder Meter sein. Wir haben uns heute Zentimeterquadrate angeschaut. Du weißt, dass ein Zentimeterquadrat eine Fläche von einem Quadratzentimeter hat. Das sind genau vier Kästchen in deinem Matheheft. Und du weißt, dass du halbe Zentimeterquadrate zu ganzen zusammensetzen kannst. Hast du alle Zentimeterquadrate der Fläche zusammengerechnet, kannst du die Flächengröße in Quadratzentimeter angeben und sie so mit einer anderen Fläche vergleichen. Oh je, was ist denn mit Kappu und Peggy los? Vielleicht waren das doch ein paar Pralinen zu viel, ihr Schleckermäuler?
Flächen vergleichen Übung
-
Wie viele Zentimeterquadrate passen in die weiße Fläche?
TippsEin Zentimeterquadrat besteht aus 4 kleinen Quadraten im Matheheft.
LösungDie Fläche besteht aus 5 Zentimeterquadraten.
Wenn 1 Zentimeterquadrat 1 cm² groß ist, hat diese Fläche einen Flächeninhalt von 5 cm².
-
Wie groß ist die weiße Fläche?
TippsDen Flächeninhalt eines Zentimeterquadrates berechnest du mit 1 cm · 1 cm = 1 cm². Zähle die Zentimeterquadrate, um den Flächeninhalt herauszufinden.
Setze die beiden halben Zentimeterquadrate zu einem ganzen Zentimeterquadrat zusammen.
LösungIn diese Fläche passen 5 Zentimeterquadrate. Wenn du die zwei halben zusammensetzt, ergibt das ein ganzes Zentimeterquadrat.
Ein Zentimeterquadrat ist 1 cm² groß, also beträgt der Flächeninhalt der Figur 5 cm².
1 cm² · 5 = 5 cm²
-
Wie groß sind die Flächeninhalte?
TippsEin Zentimeterquadrat besteht aus 4 kleinen Kästchen und hat einen Flächeninhalt von 1 cm².
Bestimme die Flächeninhalte, indem du die Flächen mit Zentimeterquadraten füllst. Halbe Zentimeterquadrate kannst du zu ganzen zusammensetzen.
LösungDu kannst den Flächeninhalt bestimmen, indem du die Flächen mit Zentimeterquadraten füllst.
Halbe Zentimeterquadrate kannst du zu ganzen zusammensetzen, um besser zählen zu können.
-
Welche Flächen sind gleich groß?
TippsUm herauszufinden, welche Flächen gleich groß sind, kannst du die Zentimeterquadrate zählen.
Ein Zentimeterquadrat besteht aus 4 kleinen Kästchen. Du kannst halbe Zentimeterquadrate zu ganzen zusammensetzen.
LösungZähle die Zentimeterquadrate der Flächen, um herauszufinden, welche die gleiche Anzahl haben und somit gleich groß sind. Bei einigen Flächen kannst du halbe Zentimeterquadrate zu ganzen zusammensetzen.
-
Wie viele Einheitsquadrate hat die Fläche aus fehlenden Pralinen?
Tipps1 Einheitsquadrat besteht aus 4 Kästchen.
LösungImmer 4 Kästchen bilden 1 Einheitsquadrat.
Bei 4 fehlenden Pralinen besteht die Fläche also aus genau 1 Einheitsquadrat. -
Welchen Flächeninhalt haben die Flächen?
TippsFülle die Flächen mit Einheitsquadraten, um ihren Flächeninhalt zu bestimmen. Setze halbe Einheitsquadrate zu ganzen zusammen.
Einheitsquadrate können unterschiedlich groß sein. Zentimeterquadrate haben einen Flächeninhalt von 1 cm². Meterquadrate dagegen sind 1 m² groß. Auch sie kannst du zählen, um den Flächeninhalt zu bestimmen.
LösungUm den Flächeninhalt zu bestimmen, kannst du Einheitsquadrate einsetzen. Bei den Flächen auf kariertem Hintergrund kannst du Zentimeterquadrate nutzen, die einen Flächeninhalt von 1 cm² haben.
Für den Flächeninhalt der Fensterquadrate nutzt du Meterquadrate mit einem Flächeninhalt von je 1 m².2 m² · 2 = 4 m²
2.575
sofaheld-Level
5.760
vorgefertigte
Vokabeln
10.213
Lernvideos
42.295
Übungen
37.364
Arbeitsblätter
24h
Hilfe von Lehrer*
innen

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Rechteck
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was ist eine Viertelstunde
- Prisma
- Mitternachtsformel
- Grundrechenarten Begriffe
- Dreiecksarten
- Quader
- Satz des Pythagoras
- Dreieck Grundschule
- Kreis
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen in Worten schreiben
- Meter
- Orthogonalität
- Schriftlich multiplizieren
- Brüche multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen berechnen
- Brüche addieren
- Kongruenz
- Exponentialfunktion
- Scheitelpunktform
- Punktsymmetrie
- Logarithmus
- Erwartungswert
- Skalarprodukt
- Primfaktorzerlegung
- Quadratische Ergänzung
- Zinseszins
- Geradengleichung aus zwei Punkten bestimmen
- Varianz
1 Kommentar
Hallo