Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Ergebnis und Ereignis

Erfahre, was Zufallsversuche sind und lernt mehr über die Konzepte von Ergebnissen und Ereignissen. Entdeckt verschiedene Formen von Ereignissen in der Stochastik. Interessiert? Das und vieles mehr findet ihr im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 178 Bewertungen
Die Autor*innen
Avatar
Team Digital
Ergebnis und Ereignis
lernst du in der Unterstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse

Ergebnis und Ereignis Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Ergebnis und Ereignis kannst du es wiederholen und üben.
  • Bestimme die korrekten Aussagen.

    Tipps

    Die Ergebnismenge beim Würfeln lautet $\Omega = \{1;2;3;4;5;6\}$

    $E = \{1\}$ ist ein Beispiel für ein Elementarereignis.

    $U = \{\} = \emptyset$ ist ein Beispiel für ein unmögliches Ereignis.

    Lösung

    Folgende Aussagen sind korrekt:

    • „Alle möglichen Ergebnisse eines Zufallsversuches werden in der Ergebnismenge zusammengefasst.“
    • „Bestimmte Ergebnisse können zu einem Ereignis zusammengefasst werden.“
    • „Ein Ergebnis ist ein Ausgang eines Zufallsversuches.“

    Folgende Aussagen nicht korrekt:

    • „Alle möglichen Ergebnisse eines Zufallsversuches werden in der Ereignismenge zusammengefasst.“
    Da alle möglichen Ergebnisse in der Ergebnismenge zusammengefasst werden, ist dieses Aussage nicht korrekt.

    • „Führt kein Ergebnis der Ergebnismenge zu einem Ereignis, dann ist dieses Ereignis ein Elementarereignis.“
    Führt kein Ergebnis der Ergebnismenge zu einem Ereignis, dann ist dieses Ereignis ein unmögliches Ereignis. Ein Elementarereignis ist im Gegensatz dazu ein Ereignis, bei dem genau ein Ergebnis zu dem Ereignis führt.

    • „Ein unmögliches Ereignis ist ein Ereignis, bei dem alle möglichen Ergebnisse zu dem Ereignis führen.“
    Wie bereits oben erwähnt, führt bei einem unmöglichen Ereignis kein Ergebnis zu dem Ereignis. Führen hingegen alle möglichen Ergebnisse zu einem Ereignis, dann ist dieses ein sicheres Ereignis.

  • Ergänze die fehlenden Begriffe.

    Tipps

    Die Ergebnismenge beim Würfeln sieht so aus: $\Omega = \{1;2;3;4;5;6\}$

    Ein anderes Wort für Ausgang ist Ergebnis.

    Lösung

    Das Würfeln ist ein Zufallsversuch. Für solche Zufallsversuche gelten bestimmte Bedingungen. Es müssen alle möglichen Ausgänge eines Zufallsversuches bekannt sein. Diese werden in der Ergebnismenge zusammengefasst.

    Der genaue Ausgang ist allerdings nicht vorhersehbar. Beim Würfeln weiß man nicht, welche Zahl man tatsächlich würfeln wird.

    Ein weiteres Merkmal eines Zufallsversuches ist, dass er beliebig oft wiederholt werden kann. Auch den Würfel kann man mehrmals werfen. Somit kann der Zufallsversuch wiederholt werden.

    Außerdem müssen bei einem Zufallsversuch immer die gleichen Bedingungen herrschen. In Bezug auf das Würfeln ist damit gemeint, dass wir nicht plötzlich einen anderen Würfel verwenden können. Die Bedingungen wären dann nämlich unterschiedlich.

    Den Ausgang eines Zufallsversuches nennt man Ergebnis. Mehrere und verschiedene Ausgänge können zu einem Ereignis zusammengefasst werden.

  • Ordne die Mengen den passenden Ereignissen zu.

    Tipps

    Ereignissen kann auch eine Bedeutung zugewiesen werden.

    Zum Beispiel könnte man sagen, dass das Ereignis $Z = \{1;3;5\}$ bedeutet, dass eine ungerade Zahl gewürfelt wurde.

    Lösung
    • $S = \{5;6\}$ bedeutet, dass eine Zahl geworfen wurde, die größer als $4$ ist. Alle Zahlen in der Ereignismenge sind größer als $4$.
    • $G = \{7\} $ ist hingegen ein unmögliches Ereignis. Ein Ereignis ist eine Teilmenge der Ergebnismenge. Die $9$ ist allerdings nicht in der Ergebnismenge enthalten. Somit ist es unmöglich, dass dieses Ereignis eintritt.
    • $E = \{3\}$ enthält nur ein Element der Ergebnismenge. Also nur ein Ergebnis führt zu dem Ereignis. Deshalb ist dieses Ereignis ein Elementarereignis.
    • Ereignissen kann auch eine Bedeutung zugewiesen werden. Ist es beim Würfeln von Bedeutung, dass eine gerade Zahl geworfen wird, kommt nur $U = \{2;4;6\}$ als Ereignis in Frage. In diesem sind nur gerade Zahlen aus der Ergebnismenge enthalten.
    • $F = \{2;3;5\}$ beinhaltet nur die Primzahlen aus der Ergebnismenge. Insofern führen nur diese Zahlen zu dem Ereignis, dass Primzahlen gewürfelt werden.
  • Bestimme die Form der einzelnen Ereignisse.

    Tipps

    Überlege, aus welchen Ereignissen die Ergebnismengen der einzelnen Zufallsversuche bestehen.

    Lösung

    Alle vier abgebildeten Elemente sind Zufallsversuche:

    • Der Münzwurf
    • Das Drehen eines Glückrads
    • Das Würfeln eines Würfels
    • Das Ziehen von vier Ass-Spielkarten
    Zunächst sind die einzelnen Ergebnismengen zu bestimmen:

    • Münzwurf: $\Omega=\{\text{Sofa}; \text{Zahl}\}$
    • Glücksrad : $\Omega = \{\text{rot}; \text{blau}; \text{gelb}; \text{schwarz}\}$
    • Würfeln: $\Omega = \{1;2;3;4;5;6\}$
    • Ziehen von Spielkarten: $\Omega = \{\text{Pik-Ass; Herz-Ass; Kreuz-Ass; Karo-Ass}\}$
    Nachdem du die einzelnen Ergebnismengen aufgestellt hast, kannst du wie folgt zuordnen:

    Elementarereignis:

    • $G=\{\text{gelb}\}$
    Begründung: $G=\{\text{gelb} \}$ enthält ein einziges Ergebnis aus der Ergebnismenge vom Glücksrad.

    • $P = \{\text{Pik-Ass}\}$
    Begründung: $P = \{\text{Pik-Ass}\}$ enthält ein einziges Ergebnis aus der Ergebnismenge vom Ziehen der Spielkarten.

    • $F= \{3\}$
    Begründung: $F= \{3\}$ enthält ein einziges Ergebnis aus der Ergebnismenge vom Würfeln.

    unmögliches Ereignis:

    • $E = \{8\}$
    Begründung: $E = \{8\}$ ist keine Teilmenge der vorhandenen Ergebnismengen. Der Würfel beinhaltet nur die Zahlen von $1$ bis $6$, weshalb die $8$ in keinem der Zufallsversuche vorkommt und somit ein unmögliches Ereignis darstellt.

    • $D = \{\text{Pik-Dame}; \text{Pik-Bube}\}$
    Begründung: $D = \{\text{Pik-Dame}; \text{Pik-Bube}\}$ ist keine Teilmenge der vorhandenen Ergebnismengen. Das Ziehen der Karten beinhaltet nur vier Ass-Karten, weshalb die Pik-Dame und der Pik-Bube keine Teilmenge der Ergebnismenge darstellen. Demnach kommen sie in keinem der Zufallsversuche vor und stellen somit ein unmögliches Ereignis dar.

    • $B =\{\text{grau; weiss}\}$
    Begründung: $B =\{\text{grau; weiss}\}$ ist keine Teilmenge der vorhandenen Ergebnismengen. Das Glücksrad beinhaltet nur die Farben blau, gelb, rot und schwarz, weshalb grau und weiss nicht Teil der Ergebnismenge sind. Demnach kommen sie in keinem der Zufallsversuche vor und stellen somit ein unmögliches Ereignis dar.

    sicheres Ereignis:

    • $S = \{\text{Sofa}; \text{Zahl}\}$
    Begründung: $S = \{\text{Sofa}; \text{Zahl}\}$ ist identisch der Ergebnismenge des Zufallversuchs Münzwurf.

    • $A =\{\text{Ass}\}$
    Begründung: $A =\{\text{Ass}\}$ ist identisch der Ergebnismenge des Zufallversuchs Karten ziehen, denn bei einem regulären Skat-Kartenspiel gibt es genau vier Ass-Karten. Diese vier Ass-Karten sind in der Ergebnismenge aufgelistet.

    sonstiges Ereignis:

    • $R = \{\text{rote Karte}\}$
    Begründung: Die roten Karten sind in der Ergebnismenge des Kartenspieles enthalten. Da es sich jedoch um zwei rote Karten handelt, ist es kein Elementarereignis. Es gibt aber noch weitere Karten und zwar die schwarzen, weshalb es sich auch nicht um ein sicheres Ereignis handelt. Demnach kann $R= \{\text{rote Karte}\}$ dem sonstigen Ereignis zugeordnet werden.

    • $W= \{2;4;6\}$
    Begründung: $W= \{2;4;6\}$ ist eine Teilmenge der Ergebnismenge des Würfelwurfes. Daher kann es kein unmögliches Ereignis sein. $W$ umfasst jedoch nicht die komplette Ergebnismenge, weshalb es hier auch kein sicheres Ereignis ist. Da es mehr als ein Ergebnis enthält, kann es hier den sonstigen Ereignissen zugeordnet werden.

  • Gib mögliche Ereignisse an.

    Tipps

    Ein Ereignis ist eine Teilmenge der Ergebnismenge.

    Ein Ereignis ist eine Zusammenfassung mehrere Ergebnisse, die in der Ergebnismenge enthalten sind.

    Ist ein Ergebnis nicht Teil der Ergebnismenge, kann es zu keinem Ereignis führen.

    Lösung

    Richtig sind:

    • $E = \{1;2;3;4\}$ – Die $1$, $2$, $3$ und $4$ sind Teil der Ergebnismenge. Dieses Ereignis ist also möglich.
    • $E = \{6\}$ – Auch die $6$ ist in der Ergebnismenge enthalten und kann somit zu einem Ereignis führen. Sie ist sogar ein sogenanntes Elementarereignis.
    • $E = \{1;2;3;4;5;6\}$ – Das ist die gesamte Ergebnismenge. Sie ist natürlich auch Teilmenge von sich selbst und somit ist auch das ein mögliches Ereignis, genauer gesagt ein sicheres Ereignis.

    Nicht korrekt sind:

    • $E = \{0,2,4\}$ – Die $0$ ist nicht Teil der Ergebnismenge. Dieses Ereignis kann also nicht eintreten.
    • $E = \{7,8,9,10\}$ – Sowohl $7$, $8$, $9$ als auch die $10$ sind alle nicht in der Ergebnismenge. Somit ist auch das kein Ereignis, das eintreten kann.

  • Ermittle die korrekten Aussagen.

    Tipps

    Mit zwei Würfeln ist es nicht möglich, eine $1$ zu würfeln.

    Die Ergebnismenge bei zwei Würfeln enthält insgesamt $5$ Primzahlen.

    Lösung

    Folgende Aussagen sind korrekt:

    • „Nur genau ein Feld vorwärts zu gehen ist ein unmögliches Ereignis.“
    Begründung: Nur ein Feld vorwärts gehen würde bedeuten, dass eine $1$ gewürfelt wird. Dies ist mit zwei Würfeln allerdings nicht möglich. Die niedrigste Zahl, die gewürfelt werden kann, ist eine $2$.

    • „Das Ereignis „Eine Primzahl wird gewürfelt“ enthält beim Würfeln mit zwei Würfeln $2$ Elemente mehr als beim Würfeln mit nur einem Würfel.“
    Begründung: Mit einem Würfel kann man eine $2$, $3$ und $5$ würfeln. Mit zwei Würfeln kann man zusätzlich noch eine $7$ und eine $11$ würfeln. Das sind zwei Primzahlen mehr. Somit stimmt diese Aussage.

    • „Das Ergebnis beim Würfeln mit zwei Würfeln setzt sich aus den Ergebnissen von zwei Zufallsversuchen zusammen.“
    Begründung: Das Würfeln mit einem Würfel ist ein Zufallsversuch. Das Ergebnis beim Würfeln mit zwei Würfeln setzt sich aus zwei Würfeln zusammen. Jeder Würfelwurf ist ein Zufallsversuch und somit besteht das Ergebnis beim Würfeln mit zwei Würfeln aus zwei zusammengesetzten Zufallsversuchen. Man spricht hier auch von einen zweistufigen Zufallsversuch. Die Ergebnismenge setzt sich dann aus den addierten Augenzahlen zusammen.

    Folgende Aussagen falsch:

    • „Die Ergebnismenge $\Omega$ ändert sich nicht.“
    Begründung: Beim Würfeln mit zwei Würfeln kann auch eine $7$, $8$, $9$, $10$, $11$ oder auch eine $12$ gewürfelt werden. Dies sind alles mögliche Ergebnisse, die in der Ergebnismenge enthalten sind. Somit ändert sich die Ergebnismenge $\Omega$.

    • „Alle Ereignisse, die mit einem Würfel erzielt werden können, können auch mit zwei Würfeln erzielt werden.“
    Begründung: Mit einem Würfel gibt es zum Beispiel das Elementarereignis „Ein Feld vorwärts gehen“. Dieses Ereignis kann nur erzielt werden, indem genau eine $1$ gewürfelt wird. Mit zwei Würfeln ist das nicht möglich, da die niedrigste Zahl eine $2$ ist.

    • „Beim Würfeln mit zwei Würfeln enthält die Ergebnismenge $\Omega$ insgesamt $4$ Elemente mehr als beim Würfeln mit nur einem Würfel.“
    Begründung: Die Ergebnismenge sieht mit zwei Würfeln so aus: $\Omega = \{2;3;4;5;6;7;8;9;10;11;12\}$. Mit einem Würfel sieht sie so aus: $\Omega = \{1;2;3;4;5;6\}$. Sie enthält also insgesamt fünf Elemente mehr.