30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Einsetzungsverfahren

Das Einsetzungsverfahren ist eines der drei Verfahren zum Lösen linearer Gleichungssysteme.

Vom realen Problem zum mathematischen Modell

Probleme gibt es viele auf der Welt. Wichtige und weniger wichtige, Probleme der Menschheit wie der Klimawandel oder persönliche. Vielleicht hattest du auch schon mal Auseinandersetzungen mit deinen Eltern oder Lehrern. Viele davon lassen sich ergründen, wenn das größere Ganze begriffen wird und damit Zusammenhänge erkannt werden. Denn wer z.B. schlechte Noten schreibt, ist nicht unbedingt faul, sondern lernt vielleicht nur anders.

In den Geistes- und Naturwissenschaften werden vereinfachte, objektive Darstellungen verwendet. Dadurch lassen sich Phänomene in der Natur und Technik besser begreifen. Konkrete Fragestellungen werden durch solche Modelle erst möglich und können gelöst werden. Auch Zahlen sind „nur“ ein mathematisches Modell, eine Darstellungsmöglichkeit für echte Probleme und ein Werkzeug, um sie zu lösen.

Stell dir vor, du planst für deinen Geburtstag eine Grillfeier mit $33$ Leuten. Du möchtest für jeden entweder eine Bratwurst- oder ein Steakbrötchen haben. Jeweils drei Würste oder ein Steak kommen dabei ins Brötchen. Du kennst deine Freunde und weißt, dass etwa doppelt so viele das Bratwurstbrötchen wollen wie das Steakbrötchen. Wie viele Würste und Steaks kaufst du also ein?

Brötchen_Würstchen.jpg

Du probierst jetzt „wild“ herum und ärgerst dich, weil es nie genau passt. Dann fällt dir ein, dass ihr im Mathematik-Unterricht ein Modell kennengelernt habt, das genau für solche Probleme gemacht ist…

Lineare Gleichungssysteme

Genau! Das lineare Gleichungssystem. Gleichungssysteme sind enorm hilfreich, wenn es um mehrere, voneinander abhängige Zusammenhänge geht. Zunächst müssen dafür die Unbekannten Größen definiert, also genau festgelegt werden. Danach wird jeder Zusammenhang in einer mathematischen Gleichung festgehalten. Werden die Unbekannten nicht quadriert oder sonst hoch einer Zahl genommen, ist es ein lineares Gleichungssystem.

Zurück zu deiner Feier – welche Unbekannten gibt es eigentlich? Klar, die Frage ist ja, wie viele Würste und Steaks du einkaufen musst. Daher legst du fest:

$\begin{array}{lll} w &:=& \text{Anzahl der Würstchen} \\ s &:=& \text{Anzahl der Steaks} \end{array}$

Mit diesen Variablen kannst du nun die Zusammenhänge als mathematische Gleichungen formulieren. Ein Zusammenhang ist sonnenklar: du brauchst doppelt so viele Bratwurst- wie Steakbrötchen. Also:

$ \text{Anzahl der Bratwurstbrötchen} = 2\cdot \text{Anzahl der Steakbrötchen} $

Weil ja auf jedem Bratwurstbrötchen drei Bratwürste liegen, gilt demnach mit den Unbekannten $w$ und $s$:

$\begin{array}{lll} \text{I} && w = 6\cdot s \end{array}$

Insgesamt willst du $33$ Brötchen machen. Teilst du die Anzahl der Würstchen durch drei, erhältst du die Anzahl der Bratwurstbrötchen. Damit kannst du folgende zweite Gleichung aufstellen:

$\begin{array}{lll} \text{II} && w:3+s=33 \end{array}$

Jetzt ist dein mathematisches Modell komplett. Jetzt brauchst du nur noch eine Methode, um dieses zu lösen! Das geht zum Beispiel mit dem Einsetzungsverfahren.

Lineare Gleichungssysteme lösen - Einsetzungsverfahren

Einsetzungsverfahren

Dein Gleichungssystem hat zwei Unbekannte und besteht aus zwei unterschiedlichen Gleichungen, die mit den römischen Zahlen $\text{I}$ und $\text{II}$ bezeichnet sind. Weil sich die Gleichungen nicht widersprechen, kann es eindeutig gelöst werden. Dafür kannst du das Einsetzungsverfahren benutzen. Zunächst muss nach einer Variablen umgestellt werden. Glücklicherweise ist die erste Gleichung sowieso schon nach $w$ umgestellt:

$\begin{array}{lll} \text{I} && w = 6\cdot s \end{array}$

Diesen Ausdruck für $w$ setzt du nun in der anderen Gleichung für $w$ ein und löst anschließend nach $s$ auf:

$\begin{array}{llll} (6s):3 + s & = & 33&\\ 2s+ s & = & 33&\\ 3\cdot s & = & 33& \vert :3\\ s & = & 11& \end{array}$

Nun weißt du die Anzahl der Steaks – nämlich genau $11$ Stück. Du kannst diesen Wert nun für $s$ in eine der ursprünglichen Gleichungen $\text{I}$ oder $\text{II}$ einsetzen und erhältst für die Anzahl der Würstchen $66$. Das Problem ist gelöst! Jetzt kannst du dir endlich Gedanken über die Musik- und Getränkeauswahl machen…