Stochastische Unabhängigkeit – Einführung

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Stochastische Unabhängigkeit – Einführung
Nach dem Schauen dieses Videos wirst du in der Lage sein, zwei Ereignisse auf stochastische Unabhängigkeit zu überprüfen.
Zunächst lernst du, wie du stochastische Unabhängigkeit mit bedingter Wahrscheinlichkeit nachweisen kannst. Anschließend lernst du eine weitere Formel für stochastische Unabhängigkeit. kennen.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie bedingte Wahrscheinlichkeit und stochastische Unabhängigkeit.
Außerdem solltest du grundlegendes Wissen zur bedingten Wahrscheinlichkeit haben.
Stochastische Unabhängigkeit – Einführung Übung
-
Beschreibe stochastische Unabhängigkeit am Beispiel „Ziehen aus einer Urne“.
TippsErste Kugel:
- $P(\text{grün})=\dfrac{3}{5}$
- $P(\text{rot})=\dfrac{2}{5}$
Ist die Wahrscheinlichkeit von $B$ unter der Bedingung $A$ genauso groß wie die Wahrscheinlichkeit von $B$ ohne weitere Bedingung, oder:
Ist die Wahrscheinlichkeit von $A$ unter der Bedingung $B$ genauso groß wie die Wahrscheinlichkeit von $A$ ohne weitere Bedingung, ...
... so sprechen wir von stochastischer Unabhängigkeit der beiden Ereignisse.LösungZwei Ereignisse sind stochastisch unabhängig voneinander, wenn das Eintreten des einen Ereignisses die Wahrscheinlichkeit des Eintretens des anderen Ereignisses nicht beeinflusst. Allgemein gilt für stochastische Unabhängigkeit die Bedingung:
$P_A(B) = P(B) \qquad$ beziehungsweise $\qquad P_B(A)=P(A)$
In Worten:
Ist die Wahrscheinlichkeit von $B$ unter der Bedingung $A$ genauso groß wie die Wahrscheinlichkeit von $B$ ohne weitere Bedingung, oder:
Ist die Wahrscheinlichkeit von $A$ unter der Bedingung $B$ genauso groß wie die Wahrscheinlichkeit von $A$ ohne weitere Bedingung, ...
... so sprechen wir von stochastischer Unabhängigkeit der beiden Ereignisse.Beim Urnenexperiment unterscheiden wir zwischen den Varianten
- Ziehen mit Zurücklegen
- Ziehen ohne Zurücklegen
Betrachten wir als Beispiel eine Urne, in der drei grüne und zwei rote Kugeln sind. Aus ihr wird zweimal hintereinander gezogen.
Die Aussage „Die Wahrscheinlichkeiten für rot bzw. grün sind im ersten Zug identisch.“ ist falsch, denn es gilt:
- $P(\text{grün})=\dfrac{3}{5}$
- $P(\text{rot})=\dfrac{2}{5}$
Ziehen mit Zurücklegen:
Die Wahrscheinlichkeit für grün beim zweiten Zug beträgt genau $\frac{3}{5}$. Dies ist gleich der bedingten Wahrscheinlichkeit für grün beim zweiten Zug (unter der Bedingung rot beim ersten Zug bzw. grün beim ersten Zug). Die beiden Ereignisse sind also stochastisch unabhängig.Die Aussage „Beim Ziehen mit Zurücklegen ändern sich die Wahrscheinlichkeiten vom ersten zum zweiten Zug nicht.“ ist also richtig.
Die Aussage „Beim Ziehen mit Zurücklegen sind die bedingten Wahrscheinlichkeiten in den Teilbäumen der zweiten Stufe gleich.“ ist ebenso richtig.
Ziehen ohne Zurücklegen:
Die Wahrscheinlichkeit für grün beim zweiten Zug beträgt auch hier genau $\frac{3}{5}$. Die bedingten Wahrscheinlichkeiten sind jedoch anders, nämlich $\frac{3}{4}$ für grün beim zweiten Zug, wenn rot beim ersten Zug und $\frac{2}{4}$ für grün beim zweiten Zug, wenn grün beim ersten Zug. Die beiden Ereignisse sind also stochastisch abhängig.Die Aussage „Beim Ziehen ohne Zurücklegen ist das Ziehen einer bestimmten Kugel im ersten und zweiten Zug stochastisch unabhängig.“ ist also falsch.
Stochastische Unabhängigkeit können wir bei Baumdiagrammen allgemein daran erkennen, dass die beiden Teilbäume der zweiten Stufe die gleichen Wahrscheinlichkeiten aufweisen.
-
Belege die stochastische Unabhängigkeit der beiden Ereignisse $A$ und $B$.
TippsDu kannst die Wahrscheinlichkeiten ermitteln, indem du die Anzahl der für ein Ereignis günstigen durch die Anzahl der möglichen Ergebnisse teilst.
Damit zwei Ereignisse $A$ und $B$ stochastisch unabhängig sind, muss die Wahrscheinlichkeit für $A$ und $B$ gleich der Wahrscheinlichkeit von $A$ mal der Wahrscheinlichkeit von $B$ sein.
LösungDamit zwei Ereignisse $A$ und $B$ stochastisch unabhängig sind, muss folgende Formel erfüllt sein:
$P(A \cap B) = P(A) \cdot P(B)$
Wir untersuchen das gegebene Beispiel:
Ein Spielwürfel wird geworfen: $\quad {\Omega = \{ 1, 2, 3, 4, 5, 6\}}$$A= \{5, 6\} $ $\qquad$ $B= \{1, 3, 5\} $
Wir bilden zunächst die Schnittmenge $A \cap B$. In ihr sind alle Elemente enthalten, die sowohl in der Menge $A$ als auch in der Menge $B$ sind. In unserem Fall gilt dies nur für die Zahl $5$. Also gilt:
$A \cap B = \{\color{#99CC00}{5}\color{black}{\}} $
Da in der Menge $A \cap B$ nur eines von sechs möglichen Ergebnissen enthalten ist, gilt:
$P(A \cap B) = \color{#99CC00}{\dfrac{1}{6}}$Wir betrachten nun die Wahrscheinlichkeiten für die Ereignisse $A$ und $B$:
In $A$ sind zwei der sechs möglichen Ergebnisse enthalten, also gilt:
$P(A)= \dfrac{2}{6} = \color{#99CC00}{\dfrac{1}{3}}$
In $B$ sind drei der sechs möglichen Ergebnisse enthalten, also gilt:
$P(B)= \dfrac{3}{6} = \color{#99CC00}{\dfrac{1}{2}}$
Somit gilt:
$P(A) \cdot P(B) = \color{#99CC00}{\dfrac{1}{2}} \color{black}{~\cdot~} \color{#99CC00}{\dfrac{1}{3}} \color{black}{~=~} \color{#99CC00}{\dfrac{1}{6}}$Schlussfolgerung:
Da $\color{#99CC00}{P(A) \cdot P(B)}$ und $\color{#99CC00}{P(A \cap B)}$ das gleiche Ergebnis haben, sind die Ereignisse $A$ und $B$ stochastisch unabhängig. Die Formel $P(A \cap B) = P(A) \cdot P(B)$ ist erfüllt. -
Entscheide, bei welchen Baumdiagrammen stochastische Unabhängigkeit vorliegt.
TippsBei diesem Baumdiagramm liegt keine stochastische Unabhängigkeit vor!
Stochastische Unabhängigkeit können wir bei Baumdiagrammen daran erkennen, dass die beiden Teilbäume der zweiten Stufe die gleichen Wahrscheinlichkeiten aufweisen.
LösungAllgemein gilt für stochastische Unabhängigkeit die Bedingung:
$P_A(B) = P(B) = P_{\bar{A}}(B)$Stochastische Unabhängigkeit können wir bei Baumdiagrammen daran erkennen, dass die beiden Teilbäume der zweiten Stufe die gleichen Wahrscheinlichkeiten aufweisen.
Wir untersuchen daraufhin die gegebenen Baumdiagramme:
Baumdiagramm 1:
Beispiel: Ziehen aus einer Urne mit $3$ roten und $7$ grünen Kugeln mit Zurücklegen.
Die Wahrscheinlichkeiten der beiden Teilbäume der zweiten Stufe sind gleich.
$\rightarrow \quad$ stochastisch unabhängigBaumdiagramm 2:
Beispiel: Zweimaliges Werfen einer Münze
Die Wahrscheinlichkeiten der beiden Teilbäume der zweiten Stufe sind gleich.
$\rightarrow \quad$ stochastisch unabhängigBaumdiagramm 3:
Beispiel: Ziehen aus einer Urne mit $4$ roten und $6$ blauen Kugeln ohne Zurücklegen.
Die Wahrscheinlichkeiten der beiden Teilbäume der zweiten Stufe sind unterschiedlich.
$\rightarrow \quad$ stochastisch abhängigBaumdiagramm 4:
Beispiel: Zweimaliges Werfen eines Würfels.
Die Wahrscheinlichkeiten der beiden Teilbäume der zweiten Stufe sind gleich.
$\rightarrow \quad$ stochastisch unabhängig -
Untersuche, welche Ereignisse stochastisch unabhängig und welche stochastisch abhängig sind.
TippsNotiere zunächst, welche Zahlen in den jeweiligen Mengen enthalten sind und bestimme die entsprechenden Wahrscheinlichkeiten.
Beispiel:
$A$: Die erzielte Zahl ist gerade.
$A= \{2,4,6,8,10\} $
$P(A)= \dfrac{1}{2}$
stochastisch unabhängig: $\quad {P(A \cap B) = P(A) \cdot P(B)}$
stochastisch abhängig: $\quad {P(A \cap B) \neq P(A) \cdot P(B)}$
LösungDamit zwei Ereignisse $A$ und $B$ stochastisch unabhängig sind, muss folgende Formel erfüllt sein:
$P(A \cap B) = P(A) \cdot P(B)$
Die Ereignisse $A$ und $B$ sind hingegen stochastisch abhängig, wenn gilt:
$P(A \cap B) \neq P(A) \cdot P(B)$
$\,$
Um die stochastische Abhängigkeit der Ereignisse zu untersuchen, geben wir zunächst die jeweiligen Ergebnismengen an und bestimmen die Wahrscheinlichkeiten:
$\bullet ~~ A$: Die erzielte Zahl ist gerade. $\quad A= \{2,4,6,8,10\} $ $\quad P(A)= \dfrac{1}{2}$
$\bullet ~~ B$: Die erzielte Zahl ist größer $5$. $\quad B= \{6,7,8,9,10\} $ $\quad P(B)= \dfrac{1}{2}$
$\bullet ~~ C$: Die erzielte Zahl ist durch $3$ teilbar. $\quad C= \{3,6,9\} $ $\quad P(C)= \dfrac{3}{10}$
$\bullet ~~ D$: Die erzielte Zahl ist kleiner oder gleich $4$. $\quad D= \{1,2,3,4\} $ $\quad P(D)= \dfrac{2}{5}$
$\bullet ~~ E$: Die erzielte Zahl ist zweistellig. $\quad E= \{10\} $ $\quad P(E)= \dfrac{1}{10}$
$\bullet ~~ F$: Die erzielte Zahl ist größer $6$. $\quad F= \{7,8,9,10\} $ $\quad P(A)= \dfrac{2}{5}$
Wir bilden nun die jeweiligen Schnittmengen und vergleichen die entsprechenden Wahrscheinlichkeiten:
$A \cap E = \{ 10\} $ $\quad P(A \cap E)= \dfrac{1}{10}$
$P(A) \cdot P(E) = \dfrac{1}{2} \cdot \dfrac{1}{10} = \dfrac{1}{20} \neq P(A \cap E)$
$\rightarrow$ stochastisch abhängig$B \cap C = \{ 6,9\} $ $\quad P(B \cap C)= \dfrac{2}{10}$
$P(B) \cdot P(C) = \dfrac{1}{2} \cdot \dfrac{3}{10} = \dfrac{3}{20} \neq P(B \cap C)$
$\rightarrow$ stochastisch abhängig$A \cap D = \{ 2,4\} $ $\quad P(A \cap D)= \dfrac{1}{5}$
$P(A) \cdot P(D) = \dfrac{1}{2} \cdot \dfrac{2}{5} = \dfrac{2}{10} = \dfrac{1}{5} = P(A \cap D)$
$\rightarrow$ stochastisch unabhängig$C \cap D = \{ 3\} $ $\quad P(C \cap D)= \dfrac{1}{10}$
$P(C) \cdot P(D) = \dfrac{3}{10} \cdot \dfrac{2}{5} = \dfrac{6}{50} \neq P(C \cap D)$
$\rightarrow$ stochastisch abhängig$A \cap B = \{ 6,8,10\} $ $\quad P(A \cap B)= \dfrac{3}{10}$
$P(A) \cdot P(B) = \dfrac{1}{2} \cdot \dfrac{1}{2} = \dfrac{1}{4} \neq P(A \cap B)$
$\rightarrow$ stochastisch abhängig$C \cap F = \{ 9\} $ $\quad P(C \cap F)= \dfrac{1}{10}$
$P(C) \cdot P(F) = \dfrac{3}{10} \cdot \dfrac{2}{5} = \dfrac{6}{50} \neq P(C \cap F)$
$\rightarrow$ stochastisch abhängig$A \cap F = \{ 8,10\} $ $\quad P(A \cap F)= \dfrac{1}{5}$
$P(A) \cdot P(F) = \dfrac{1}{2} \cdot \dfrac{2}{5} = \dfrac{2}{10} = \dfrac{1}{5} = P(A \cap F)$
$\rightarrow$ stochastisch unabhängig -
Gib die Ergebnismengen der Ereignisse an.
TippsMöglich sind insgesamt die Zahlen $1\,$–$\ 6$, die Ergebnismenge lautet also:
$\Omega = \{1,2,3,4,5,6\}$Die Zahl $5$ selbst ist nicht kleiner als $5$.
LösungBei der Untersuchung stochastischer Unabhängigkeit müssen wir mit Ereignissen und den zugehörigen Ergebnismengen umgehen.
Häufig ist ein Ereignis in Worten gegeben. Um Verknüpfungen zu bilden oder Berechnungen anzustellen, ist es dann sinnvoll, die Ergebnismenge zu dem Ereignis aufzuschreiben. Darin sind alle Ergebnisse enthalten, auf die das Ereignis zutrifft.
Wir betrachten den Würfelwurf. Möglich sind hier insgesamt die Zahlen $1\,$–$\ 6$, die Ergebnismenge lautet also:
$\Omega = \{1,2,3,4,5,6\}$Wir betrachten nun die beschriebenen Ereignisse:
Es wird eine ungerade Zahl geworfen.
Die Zahlen $1$, $3$ und $5$ sind ungerade. Diese müssen wir markieren.
$\color{#99CC00}{E_1 = \{1, 3, 5\}}$Es wird eine Zahl kleiner als $5$ geworfen.
Da $5$ selbst nicht kleiner als $5$ ist, müssen wir nur die Zahlen $1$, $2$, $3$ und $4$ markieren.
$\color{#99CC00}{E_2 = \{1, 2, 3, 4\}}$Es wird eine gerade Zahl größer als $4$ geworfen.
Die Zahlen $2$, $4$ und $6$ sind gerade. Davon ist nur die Zahl $6$ größer als $4$. Diese müssen wir markieren.
$\color{#99CC00}{E_3 = \{6\}}$ -
Bestimme die fehlenden Wahrscheinlichkeiten.
TippsDamit zwei Ereignisse $A$ und $B$ stochastisch unabhängig sind, muss folgende Formel erfüllt sein:
$P(A \cap B) = P(A) \cdot P(B) $
Setze die gegebenen Werte in die Formel ein und stelle sie nach der gesuchten Größe um.
LösungDamit zwei Ereignisse $A$ und $B$ stochastisch unabhängig sind, muss folgende Formel erfüllt sein:
$P(A \cap B) = P(A) \cdot P(B) \quad \Leftrightarrow \quad P_A(B)=P(B)$
Grundlage dieser Äquivalenz ist die Formel für die bedingte Wahrscheinlichkeit:
$P_A(B)= \dfrac{P(A\cap B)}{P(A)}$Wir können somit die fehlenden Werte ermitteln:
Aufgabe 1:
$P(A)= 0{,}3$
$P(A \cap B)= 0{,}18$
$P(B) =\dfrac{P(A\cap B)}{P(A)} = \dfrac{0{,}18}{0{,}3} = 0{,}6$Aufgabe 2:
$P_A(B)= 0{,}1$
$P(A \cap B)= 0{,}08$
$P(A) =\dfrac{P(A\cap B)}{P_A(B)} = \dfrac{0{,}08}{0{,}1} = 0{,}8$Aufgabe 3:
$P(B)= 0{,}5$
$P(A \cap B)= 0{,}5$
$P(A) =\dfrac{P(A\cap B)}{P(A)} = \dfrac{0{,}5}{0{,}5} = 1$
4.880
sofaheld-Level
6.572
vorgefertigte
Vokabeln
8.834
Lernvideos
38.603
Übungen
34.752
Arbeitsblätter
24h
Hilfe von Lehrer*
innen

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Rechteck
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Was ist eine Viertelstunde
- Prisma
- Mitternachtsformel
- Grundrechenarten Begriffe
- Dreiecksarten
- Quader
- Satz des Pythagoras
- Dreieck Grundschule
- Kreis
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen in Worten schreiben
- Meter
- Orthogonalität
- Schriftlich multiplizieren
- Brüche multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen berechnen
- Brüche addieren
- Kongruenz
- Exponentialfunktion
- Scheitelpunktform
- Logarithmus
- Erwartungswert
- Skalarprodukt
- Primfaktorzerlegung
- Quadratische Ergänzung
- Zinseszins
- Geradengleichung aus zwei Punkten bestimmen
- Sinusfunktion
- Natürliche Zahlen
- Brüche dividieren