Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Quadrat- und Kubikzahlen

Eine Quadratzahl ist das Ergebnis, wenn man eine Zahl mit sich selbst multipliziert. Dagegen entstehen Kubikzahlen, wenn man eine Zahl dreimal mit sich selbst multipliziert. Die Texte erklären die Definitionen, Eigenschaften und geben Beispiele. Interessiert? All das und noch mehr findest du im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.6 / 55 Bewertungen
Die Autor*innen
Avatar
Team Digital
Quadrat- und Kubikzahlen
lernst du in der Unterstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse - Oberstufe 5. Klasse - 6. Klasse

Quadrat- und Kubikzahlen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Quadrat- und Kubikzahlen kannst du es wiederholen und üben.
  • Gib an, ob es sich um eine Quadratzahl, eine Kubikzahl oder keines von beiden handelt.

    Tipps

    Eine Quadratzahl ist das Produkt einer Multiplikation, bei der eine natürliche Zahl einmal mit sich selbst multipliziert wird.

    Eine Kubikzahl ist das Produkt einer Multiplikation, bei der eine natürliche Zahl zweimal mit sich selbst multipliziert wird.

    Beispiel:

    $8$ ist eine Kubikzahl, da $2^3=8$ gilt.

    Lösung

    Quadratzahlen

    • $25$ ist eine Quadratzahl, da $5^2=5\cdot5=25$.
    • $16$ ist eine Quadratzahl, da $4^2=4 \cdot 4=16$.
    • $81$ ist eine Quadratzahl, da $9^2=9 \cdot 9=81$.
    Kubikzahlen

    • $125$ ist eine Kubikzahl, da $5^3=5 \cdot 5 \cdot 5=125$.
    • $27$ ist eine Kubikzahl, da $3^3=3 \cdot 3 \cdot 3=27$.
    keine Quadrat- oder Kubikzahlen:

    • $3$
    • $5$
  • Gib an, ob die Aussagen richtig sind.

    Tipps

    Sieh dir folgendes Beispiel an:

    $5^3=5 \cdot 5 \cdot 5 =125$

    Der Begriff „Kubikzahl“ kommt von dem lateinischen Wort „Kubus“, das Würfel bedeutet.

    Lösung

    Wahre Aussagen:

    • Ist eine Zahl gerade, so ist ihre Quadratzahl auch gerade.
    Diese Aussage ist richtig, was wir an einem Beispiel veranschaulichen können: Die Zahl $4$ ist gerade. Ihre Quadratzahl ist $4^2=16$, also auch eine gerade Zahl.
    • Die Addition aufeinanderfolgender ungerader Zahlen, beginnend mit $1$, ergibt immer eine Quadratzahl.
    Dies ist richtig, was wir an einem Beispiel verdeutlichen können: Addieren wir die ersten beiden ungeraden Zahlen $1+3$, so ergibt sich die Quadratzahl $2^2=4$.
    • Wird eine ganze Zahl zweimal mit sich selbst multipliziert, so ergibt sich eine Kubikzahl.
    Diese Aussage ist richtig. Beispielsweise ist $125$ eine Kubikzahl, wir können auch schreiben: $125=5^3=5\cdot 5\cdot 5$.

    Falsche Aussagen:

    • Die Quadratzahl $5^2$ entspricht dem Volumen eines Würfels mit der Kantenlänge $5$.
    Diese Aussage ist falsch, denn die Quadratzahl $5^2$ entspricht dem Flächeninhalt eines Quadrats mit der Seitenlänge $5$. Dem Volumen eines Würfels mit der Kantenlänge $5$ entspricht hingegen die Kubikzahl $5^3$.
    • Die Quadratzahl einer ungeraden Zahl ist gerade.
    Diese Aussage ist falsch. An dem Beispiel $3^2=9$ erkennen wir, dass die Quadratzahl einer ungeraden Zahl ungerade ist.
  • Entscheide jeweils, ob es sich um eine Quadratzahl handelt.

    Tipps

    Eine Quadratzahl ist das Produkt einer Multiplikation, bei der eine natürliche Zahl einmal mit sich selbst multipliziert wird. Beispielsweise ist $16$ eine Quadratzahl, da $4^2=16$ gilt.

    Lösung

    Folgende Zahlen sind Quadratzahlen:

    • $1=1^2$
    • $81=9^2$
    • $121=11^2$
    • $289=17^2$
    • $441 = 21^2$
    Wir können feststellen, dass eine Zahl keine Quadratzahl ist, indem wir sie mit der nächstkleineren und nächstgrößeren Quadratzahl vergleichen:
    • $5$ ist keine Quadratzahl, da $2^2=4$ und $3^2=9$, dazwischen gibt es keine Quadratzahl.
    • $76$ ist keine Quadratzahl, da $8^2=64$ und $9^2=81$, dazwischen gibt es keine Quadratzahl.
    • $239$ ist keine Quadratzahl, da $15^2=225$ und $16^2=256$, dazwischen gibt es keine Quadratzahl.
    • $11$ ist keine Quadratzahl, da $3^2=9$ und $4^2=16$, dazwischen gibt es keine Quadratzahl.

  • Charakterisiere die gegebenen Quadrate und Würfel.

    Tipps

    Um das Volumen eines Würfels zu berechnen, wird die Kantenlänge zweimal mit sich selbst multipliziert. Es ergibt sich eine Kubikzahl.

    Lösung
    • Ein Würfel mit der Kantenlänge $4$ hat das Volumen $4^3=4 \cdot 4 \cdot 4= 64$.
    • Ein Quadrat mit der Kantenlänge $6$ hat einen Flächeninhalt von $6^2=6 \cdot 6=36$.
    • Ein Würfel mit der Kantenlänge $2$ hat das Volumen $2^3=2 \cdot 2 \cdot 2= 8$.
    • Ein Quadrat mit dem Flächeninhalt $9$ hat eine Seitenlänge von $3$, da $3^2=3\cdot3=9$. Der Würfel mit der Grundfläche $9$ hat also eine Kantenlänge von $3$ und das Volumen von $3^3=3\cdot3\cdot3=27$.
  • Berechne die Quadratzahlen.

    Tipps

    $3^3=3\cdot 3 =9$

    Lösung

    Eine Quadratzahl erhält man, indem man eine natürliche Zahl quadriert, also einmal mit sich selbst multipliziert. Wir können also die Quadratzahlen durch Multiplikation der Zahlen mit sich selbst berechnen:

    $2^2=2 \cdot 2=4$
    $4^2=4 \cdot 4=16$
    $5^2=5 \cdot 5=25$
    $8^2=8 \cdot 8=64$
    $10^2=10 \cdot 10=100$
    $12^2=12 \cdot 12=144$

  • Vervollständige die Überlegung zur Bestimmung der nächsten Quadratzahl.

    Tipps

    Die Addition aufeinanderfolgender ungerader Zahlen, beginnend mit $1$, ergibt immer eine Quadratzahl.

    Lösung

    Die Addition aufeinanderfolgender ungerader Zahlen, beginnend mit $1$, ergibt immer eine Quadratzahl.

    Beginnen wir mit den ersten beiden ungeraden Zahlen, so ergibt sich:
    $1+3=4=2^2$
    Addieren wir die nächste ungerade Zahl, also $5$, so ergibt sich:
    $1+3+5=4+5=9=3^2$
    Addieren wir die nächste ungerade Zahl, so ergibt sich die nächstgrößere Quadratzahl, also $16$:
    $1+3+5+7=16=4^2$
    Das Ergebnis der Addition ist also immer eine Quadratzahl, wobei die Zahl, die mit sich selbst multipliziert wird, der Anzahl der Summanden entspricht:
    $1+3+5+7+9+11+13=49=7^2$
    Hier werden beispielsweise die ersten sieben ungeraden Zahlen addiert, die Anzahl der Summanden ist also $7$, das Ergebnis ist daher $7^2$.
    Werden die ersten zehn ungeraden Zahlen summiert, so ist das Ergebnis $10^2$:
    $1+3+5+7+9+11+13+15+17+19=100=10^2$