Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Prozentrechnung: Rabatt und Aufschlag

Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 115 Bewertungen
Die Autor*innen
Avatar
Team Digital
Prozentrechnung: Rabatt und Aufschlag
lernst du in der Unterstufe 2. Klasse - 3. Klasse - 4. Klasse

Prozentrechnung: Rabatt und Aufschlag Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Prozentrechnung: Rabatt und Aufschlag kannst du es wiederholen und üben.
  • Gib die Formeln zur Berechnung des Verkaufspreises an.

    Tipps

    Ein Rabatt reduziert den Ursprungspreis. Ein Aufschlag erhöht den Ursprungspreis.

    Der Startpunkt der Rechnung ist der Ursprungspreis.

    Lösung

    Richtige Aussagen:

    $ \bullet \text{Verkaufspreis} = (100\,\% - \text{Rabatt}) \cdot \text{Ursprungspreis}$

    Begründung: Der Verkaufspreis wird ermittelt. Die Reduzierung des Ursprungspreises erfolgt durch die Subtraktion.

    $ \bullet \text{Verkaufspreis} = (100\,\% + \text{Aufschlag}) \cdot \text{Ursprungspreis} $

    Begründung: Der Verkaufspreis wird ermittelt. Der Aufschlag des Ursprungspreises erfolgt durch die Addition.

    Falsche Aussagen:

    $\bullet \text{Verkaufspreis} = (100\,\% - \text{Aufschlag}) \cdot \text{Ursprungspreis}$

    Begründung: Der Aufschlag wird subtrahiert statt addiert.

    $\bullet \text{Ursprungspreis} = (100\,\% - \text{Rabatt}) \cdot \text{Verkaufspreis}$

    Begründung: Der Ursprungspreis und der Verkaufspreis sind hier vertauscht. Ermittelt werden soll der Verkaufspreis.

    $\bullet \text{Ursprungspreis} = (100\,\% - \text{Aufschlag}) \cdot \text{Verkaufspreis}$

    Begründung: Der Ursprungspreis und der Verkaufspreis sind hier vertauscht. Zudem wird der Aufschlag hier subtrahiert statt addiert.

    $\bullet \text{Verkaufspreis} = (100\,\% + \text{Rabatt}) \cdot \text{Ursprungspreis}$

    Begründung: Der Rabatt wird hier addiert statt subtrahiert. Ein Rabatt hat die Reduzierung des Ursprungspreises zur Folge, weshalb subtrahiert werden muss.

  • Berechne die Verkaufspreise der Gitarre und des Saxophons.

    Tipps

    Beispiel: Ein Rabatt von $40\,\%$ wird gegeben. Der Prozentsatz ist demnach: $(100\,\% - 40\,\% = 60\,\%)$

    oder

    $(1 - 0,\!4) = 0,\!6$.

    Der Aufschlag wird entweder als Dezimalzahl zu $1$ addiert oder als Prozentzahl zu $100\,\%$.

    Lösung

    $\begin{array}{rcl} \text{Verkaufspreis}_{Gitarre} &=& (100\,\% - \text{Rabatt}) \cdot \text{Ursprungspreis} \\ \text{Verkaufspreis}_{Gitarre} &=& (100\,\% - 25\,\%) \cdot 200 \,€ \\ \text{Verkaufspreis}_{Gitarre} &=& 75\,\% \cdot 200 \,€ \\ \text{Verkaufspreis}_{Gitarre} &=& 0,\!75 \cdot 200 \,€ \\ \text{Verkaufspreis}_{Gitarre} &=& 150 \,€ \\ \end{array}$

    $\begin{array}{rcl} \text{Verkaufspreis}_{Saxophon} &=& (100\,\% + \text{Aufschlag}) \cdot \text{Ursprungspreis} \\ \text{Verkaufspreis}_{Saxophon} &=& (100\,\% + 35\,\%) \cdot 500 \,€ \\ \text{Verkaufspreis}_{Saxophon} &=& 135\,\% \cdot 500 \,€ \\ \text{Verkaufspreis}_{Saxophon} &=& 1,\!35 \cdot 500 \,€ \\ \text{Verkaufspreis}_{Saxophon} &=& 675 \,€ \end{array}$

    $\begin{array}{rcl} \text{Verkaufspreis}_{SaxophonNeu} &=& 120\,\% \cdot 675 \,€ \\ \text{Verkaufspreis}_{SaxophonNeu} &=& 1,\!20 \cdot 675 \,€ \\ \text{Verkaufspreis}_{SaxophonNeu} &=& 810 \,€ \\ \end{array}$

  • Berechne die Verkaufspreise.

    Tipps

    Beispielrechnung:

    $\text{Ursprungspreis:} ~10\,€$
    $\text{Rabatt:} ~20\,\% $

    $\begin{array}{lcr} \text{Verkaufspreis} &=& (100\,\% - 20\,\%) \cdot 10\,€ \\ &=& 80\,\% \cdot 10\,€ \\ &=& 0,\!8 \cdot 10\,€ \\ &=& 8\,€ \end{array}$

    Der Rabatt wird von $100\,\%$ subtrahiert, der Aufschlag wir zu $100\,\%$ addiert.

    Lösung

    Rabatt:
    $\text{Ursprungspreis:}~ 35\,€$
    $\text{Rabatt:} ~10\,\%$:

    $\begin{array}{lcr} \text{Verkaufspreis}_{Rabatt} &=& (1 - \text{Rabatt}) \cdot \text{Ursprungspreis} \\ &=& (100\,\% - 10\,\%) \cdot 35\,€ \\ &=& (1 - 0,\!1) \cdot 35\,€ \\ &=& 0,\!9 \cdot 35\,€ \\ &=& 31,\!50\,€ \end{array}$

    Aufschlag:
    $\text{Ursprungspreis:}~ 24\,€$
    $\text{Aufschlag:} ~55\,\%$:

    $\begin{array}{lcr} \text{Verkaufspreis}_{Aufschlag} &=& (1 + \text{Aufschlag}) \cdot \text{Ursprungspreis} \\ &=& (100\,\% + 55\,\%) \cdot 24\,€ \\ &=& (1 + 0,\!55) \cdot 24\,€ \\ &=& 1,\!55 \cdot 24\,€ \\ &=& 37,\!20\,€ \end{array} $

  • Ermittle die Verkaufspreise des Fitnessstudios.

    Tipps

    Beispielrechnung: Es wird ein Rabatt von $40\,\%$ gegeben. Der Prozentsatz ist demnach

    $(100\,\% - 40\,\%) = 60\,\%$.

    Der Prozentsatz kann auch in Dezimalzahlen geschrieben werden:

    $(1 - 0,\!4) = 0,\!6$.

    Lösung

    $1.$
    $\text{Ursprungspreis} = 20\,€$
    $\text{Aufschlag} = 30\,\% $,

    $\begin{array}{rcl} \text{Verkaufspreis} &=& (1 + 0,\!3) \cdot 20\,€ \\ &=& 1,\!3 \cdot 20\,€ \\ &=& 26\,€ \end{array}$

    $2.$
    $\text{Ursprungspreis} = 5\,€$
    $\text{Aufschlag} = 15\,\% $,

    $\begin{array}{rcl} \text{Verkaufspreis} &=& (1 + 0,\!15) \cdot 5\,€ \\ &=& 1,\!15 \cdot 5\,€ \\ &=& 5,\!75\,€ \end{array}$

    $3.$
    Kunden:
    $\text{Ursprungspreis} = 3,\!50\,€$
    $\text{Rabatt} = 40\,\%$,

    $\begin{array}{rcl} \text{Verkaufspreis} &=& (1 - 0,\!4) \cdot 3,\!50\,€ \\ &=& 0,\!6 \cdot 3,\!50\,€ \\ &=& 2,\!10\,€ \end{array}$

    Mitarbeiter:
    $\text{Ursprungspreis} = 3,\!50\,€$
    $\text{Rabatt} = 70\,\%$,

    $\begin{array}{rcl} \text{Verkaufspreis} &=& (1 - 0,\!7) \cdot 3,\!50\,€ \\ &=& 0,\!3 \cdot 3,\!50\,€ \\ &=& 1,\!05\,€ \end{array}$

  • Benenne die Bezeichnungen der Formeln.

    Tipps

    Der Verkaufspreis ist der Preis, zu dem ein Produkt verkauft werden soll.

    Aufschläge steigern die Preise.

    Lösung

    Richtige Aussagen:

    $\bullet$ „Der Wert der Erhöhung wird Aufschlag genannt.“

    $\bullet$ „Der Wert der Reduktion eines Preises wird Rabatt genannt. Er kann als Geldbetrag oder als Prozentsatz angegeben werden.“

    $ \bullet$ „Der Verkaufspreis wird durch den Ursprungspreis und den Aufschlag bzw. den Rabatt errechnet.“

    Falsche Aussagen:

    $\bullet$ „Der Ursprungspreis ist der Preis, der durch die Erhöhung oder die Reduzierung des Startpunktes ermittelt wird.“

    Begründung: Der Verkaufspreis wird ermittelt. Der Ursprungspreis ist der Startpunkt.

    $\bullet$ „Der Aufschlag kann nur als Prozentsatz angegeben werden.“

    Begründung: Der Aufschlag kann auch als Geldwert angegeben werden.

    $\bullet$ „Der Wert einer Reduktion eines Preises wird Aufschlag genannt.“

    Begründung: Der Wert einer Reduktion ist der Rabatt. Der Aufschlag gibt eine Erhöhung des Preises an.

    $\bullet$ „Der Ursprungspreis wird durch den Verkaufspreis und den Aufschlag bzw. den Rabatt errechnet.“

    Begründung: Der Ursprungspreis ist der Startpunkt der Berechnung. Der Verkaufspreis wird durch den Ursprungspreis und den Aufschlag bzw. den Rabatt errechnet.

  • Bestimme die jeweiligen Rabatte und Aufschläge.

    Tipps

    Gesucht werden hier der Aufschlag bzw. der Rabatt. Die bekannten Formeln müssen daher umgestellt werden.

    Beispiel $1$:
    $\text{Verkaufspreis} = 150\,€$
    $\text{Ursprungspreis} = 200\,€$

    $\begin{array}{rcl} \text{Prozentsatz} &=& \frac{\text{Verkaufspreis}}{\text{Ursprungspreis}} \\ &=& \frac{150\,€}{200\,€} \\ &=& 0,\!75 \end{array}$

    $\begin{array}{rcl} \text{Rabatt} &=& 1 - \text{Prozentsatz} \\ &=& 1 - 0,\!75 \\ &=& 0,\!25 \\ &=& 25\,\% \end{array}$

    Beispiel $2$:
    $\text{Verkaufspreis} = 300\,€$
    $\text{Ursprungspreis} = 200\,€$

    $\begin{array}{rcl} \text{Prozentsatz} &=& \frac{\text{Verkaufspreis}}{\text{Ursprungspreis}} \\ &=& \frac{300\,€}{200\,€} \\ &=& 1,\!5 \end{array}$

    $\begin{array}{rcl} \text{Aufschlag} &=& \text{Prozentsatz} - 1 \\ &=& 1,\!5 - 1 \\ &=& 0,\!5 \\ &=& 50\,\% \end{array}$

    Lösung

    $1.$

    $\text{Verkaufspreis} = 121,\!50 \,€$
    $\text{Ursprungspreis} = 90 \,€$

    $\begin{array}{rcl} \text{Prozentsatz} &=& \frac{\text{Verkaufspreis}}{\text{Ursprungspreis}} \\ &=& \frac{121,50 \,€}{90 \,€} \\ &=& 1,\!35 \end{array}$

    Da der Prozentsatz größer als $1$ ist, handelt es sich um einen Aufschlag:

    $\begin{array}{rcl} \text{Aufschlag} &=& (\text{Prozentsatz} - 1) \\ &=& 1,\!35 - 1 \\ &=& 0,\!35 \\ &=& 35\,\% \end{array}$

    $2.$

    $\text{Verkaufspreis} = 248 \,€$
    $\text{Ursprungspreis} = 310 \,€$

    $\begin{array}{rcl} \text{Prozentsatz} &=& \frac{\text{Verkaufspreis}}{\text{Ursprungspreis}} \\ &=& \frac{248 \,€}{310 \,€} \\ &=& 0,\!8 \end{array}$

    Da der Prozentsatz kleiner als $1$ ist, handelt es sich um einen Rabatt:

    $\begin{array}{rcl} \text{Rabatt} &=& (1 - \text{Prozentsatz}) \\ &=& 1 - 0,\!8 \\ &=& 0,\!2 \\ &=& 20\,\% \end{array}$

    $3.$

    $\text{Verkaufspreis} = 3,\!50 \,€$
    $\text{Ursprungspreis} = 5,\!00 \,€$

    $\begin{array}{rcl} \text{Prozentsatz} &=& \frac{\text{Verkaufspreis}}{\text{Ursprungspreis}} \\ &=& \frac{3,50 \,€}{5 \,€} \\ &=& 0,\!7 \end{array}$

    Da der Prozentsatz kleiner als $1$ ist, handelt es sich um einen Rabatt:

    $\begin{array}{rcl} \text{Rabatt} &=& (1 - \text{Prozentsatz}) \\ &=& 1 - 0,\!7 \\ &=& 0,\!3 \\ &=& 30\,\% \end{array}$