Koordinatensystem – Aufbau

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Koordinatensystem – Aufbau
Nach dem Schauen dieses Videos wirst du in der Lage sein, Punkte im Koordinatensystem zu verordnen.
Zunächst lernst du, wie du Punkte in einem Koordinatensystem einträgst und abliest. Anschließend lernst du wie das vollständige Koordinatensystem in Quadranten unterteilt wird.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Koordinatensystem, Koordinaten, Koordinatenachse und Koordinatenursprung.
Bevor du dieses Video schaust, solltest du bereits wissen, wie ein einfaches Koordinatensystem aufgebaut ist.
Nach diesem Video wirst du darauf vorbereitet sein, zu lernen wie du Funktionsgraphen in ein Koordinatensystem eintragen kannst.
Transkript Koordinatensystem – Aufbau
Koordinatensysteme. Das klingt nach Mathe! Aber wusstest du, dass ein Schachbrett auch ein Koordinatensystem ist? Jedes Feld kann eindeutig durch ein Zahlen-Buchstaben-Paar beschrieben werden. Wir können auch einen Blick auf den Globus werfen. Hier bilden Längen- und Breitengrade ein geographisches Koordinatensystem der Erde, wodurch die Position von jeder Stadt, jedem Dorf und jedem See bestimmt werden kann! Immer dann, wenn es darum geht die Lage eines Feldes, eines Punktes oder eines Ortes eindeutig zu beschreiben, helfen uns Koordinatensysteme. Genauso ist es auch bei einem „Koordinatensystem“ im Mathematikunterricht. Dieses Koordinatensystem kennst du wahrscheinlich schon. Es setzt sich aus einer waagerechten Achse, der X-Achse, und einer senkrechten Achse, nämlich der Y-Achse zusammen. Beide Achsen beginnen bei Null und sind in Einer-Abständen durchnummeriert. Die beiden Koordinatenachsen stehen außerdem genau senkrecht aufeinander. Jetzt können wir die Koordinaten eines Punktes im Koordinatensystem ablesen. Wie zum Beispiel von diesem hier. Dafür betrachten wir immer zuerst den entsprechenden x-Wert, und dann den zugeordneten y-Wert. Ebenso können wir einen Punkt in das Koordinatensystem eintragen, wenn wir seine Koordinaten gegeben haben. Dabei immer daran denken: Zuerst die x-Koordinate, also vier, dann die y-Koordinate, in diesem Fall eins! Der Punkt „vier eins“ liegt im Koordinatensystem somit hier. Wenn wir die Koordinaten vertauschen, landen wir – wie du siehst – bei einem ganz anderen Punkt. So weit, so gut! Doch wie sieht es eigentlich aus, wenn wir negative Zahlen als Koordinaten haben? Diese müssen wir doch auch irgendwie im Koordinatensystem darstellen können. Kein Problem! Dafür verlängern wir die x-Achse nach links, und die y-Achse nach unten. Anschließend können wir die neuen Abschnitte mit den negativen Zahlen beschriften. Der Schnittpunkt der Koordinatenachsen ist der Koordinatenursprung „null, null“. Die x-Achse wird auch Abszisse, die y-Achse auch Ordinate genannt. Wie du siehst, ist die Fläche des Koordinatensystems jetzt in vier Teilflächen unterteilt. Diese Teilflächen bezeichnen wir als Quadranten. Die Quadranten werden mit römischen Ziffern durchnummeriert. Wir beginnen oben rechts mit römisch eins, und nummerieren dann gegen den Uhrzeigersinn. So ist eindeutig klar, welchen Bereich wir meinen, wenn wir zum Beispiel vom dritten Quadranten sprechen. Auch in diesem Koordinatensystem gilt beim Eintragen oder Ablesen von Punkten: Zuerst die x-Koordinate, dann die y-Koordinate. Der Punkt „minus drei, zwei“ liegt also hier. Und dieser Punkt wird durch die Koordinaten „zwei, minus eins“ beschrieben. Allgemein können wir festhalten, dass alle Punkte, die im ersten Quadranten liegen, sowohl eine positive x-Koordinate als auch eine positive y-Koordinate haben. Im zweiten Quadranten haben alle Punkte eine negative x-, aber eine positive y-Koordinate. Im dritten Quadranten sind alle Koordinaten negativ, und im vierten Quadranten sind die x-Koordinaten aller Punkte positiv und dafür die y-Koordinaten negativ. Zum Abschluss eine kleine Übung: Kannst du die Koordinaten dieser Punkte im Koordinatensystem ablesen? Pausiere das Video doch kurz und notiere dir die entsprechenden Koordinaten. Hier sind sie! Gar nicht so schwer, oder? Und noch ein paar weitere Punkte samt ihrer Koordinaten. In welchem Quadranten liegen diese Punkte jeweils? Kurz pausieren, dann siehst du die Lösung. Punkt D liegt im dritten, Punkt E im ersten und Punkt F im zweiten Quadranten. Alles klar, Zeit für eine Zusammenfassung! Bei einem Koordinatensystem stehen die x-Achse und die y-Achse senkrecht aufeinander. Durch die Erweiterung mit den negativen Zahlen erhalten wir ein Koordinatensystem, dessen Gesamtfläche wir in vier Quadranten unterteilen können. Wir bezeichnen diese mit römischen Ziffern. Die Vorgehensweise beim Eintragen und Ablesen von Punkten bleibt dabei genauso, wie du es schon vom einfachen Koordinatensystem gewohnt bist: Wir betrachten immer zuerst die x-Koordinate und dann die y-Koordinate. So können wir mit einem Koordinatensystem die Position jedes Punktes eindeutig bestimmen. Egal, ob wir einen Punkt in diesem Koordinatensystem, ein Feld auf einem Schachbrett, oder die Lage deiner Heimatstadt auf einer Karte beschreiben möchten.
Koordinatensystem – Aufbau Übung
-
Überprüfe die Aussagen zum Koordinatensystem.
-
Gib die Koordinaten der Punkte an.
-
Bestimme die Koordinaten der Punkte.
-
Untersuche, welche Punkte den gleichen Abstand zur -Achse bzw. -Achse haben.
-
Vervollständige die Beschriftung des Koordinatensystems.
-
Entscheide, in welchem Quadranten die Punkte liegen.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
7.733
Lernvideos
37.178
Übungen
32.408
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt
Das Video ist sehr hilfreich das Video erklärt mir das Thema besser als mein Mathelehrer
Dieses Video ist sooooo hilfreich :D
Im Unterricht hab ich es nicht verstanden. Aber jetzt schon.🥳
Super
Das video auch .