Jahres-, Monats-, Tageszinsen
"Sparstrümpfe waren gestern, Geld auf der Bank bringt Zinsen! Tauche ein in die Grundbegriffe der Zinsrechnung und entdecke die Unterschiede zwischen Jahres-, Monats- und Tageszinsen, sowie ihre Berechnungsweise. Interessiert? Dann lass dich in die faszinierende Welt der Zinsen entführen!"

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Jahres-, Monats-, Tageszinsen
Sparstrümpfe
Dörte Jonas hat ihr Geld in Socken gesammelt. Nun hat sie allerdings erfahren, dass es viel schlauer ist, das Geld bei der Bank anzulegen. Hier bekommt sie nämlich Zinsen auf ihr Geld. Um dies genauer zu untersuchen, schauen wir uns Jahreszinsen, Monatszinsen und Tageszinsen an.
Grundbegriffe der Zinsrechnung
In der Zinsrechnung unterscheiden wir die folgenden drei Grundbegriffe:
- Kapital : gibt das gesparte oder geliehene Geld an
- Zinsen : gibt an, um wie viel sich das Kapital im Laufe des Jahres verändert
- Zinssatz : gibt das Verhältnis zwischen Zinsen und Kapital an
Die einzelnen Größen können mithilfe der drei folgenden Formeln berechnet werden:
$K=\dfrac{Z}{p\%} \qquadZ=K \cdot p\%\qquadp\% = \dfrac{Z}{K}$
Jahreszinsen, Monatszinsen, Tageszinsen
Die Bank unterscheidet zwischen Jahreszinsen, Monatszinsen und Tageszinsen.
Was ist ein Jahreszins?
Um den Jahreszins zu berechnen, schauen wir uns zunächst die Definition des Jahreszinses an:
Werden die Zinsen für ein ganzes Jahr angegeben, so nennt man das die Jahreszinsen. Wir können die Jahreszinsen mit der Formel
berechnen.
Was ist ein Monatszins?
Um den Monatszins zu berechnen, schauen wir uns zunächst die Definition des Monatszinses an:
Wird das Geld nur für einige Monate verzinst, so sprechen wir von Monatszinsen. Da das Jahr Monate hat, können wir den Jahreszins auf den Monatszins umrechnen, indem wir durch dividieren.
Was ist ein Tageszins?
Um den Tageszins zu berechnen, schauen wir uns zunächst die Definition des Tageszinses an:
Wird das Geld nur für einige Tage verzinst, so sprechen wir von Tageszinsen. In der Zinsrechnung gehen wir immer davon aus, dass ein Jahr Tage hat, dementsprechend hat dann ein Monat immer Tage. Wir können also den Tageszins berechnen, indem wir den Jahreszins durch dividieren.
Beispiele zu Zinsen
Wir betrachten als Beispiel Dörtes Sparstrumpf: Er beinhaltet €, welche sie auf der Bank anlegt. Die Bank zahlt Zinsen pro Jahr.
Jahreszins berechnen – Beispiel
Wir können den Jahreszins mit der Formel berechnen:
Monatszins berechnen – Beispiel
Wir können nun auch die Monatszinsen mit der Formel berechnen:
Um die Zinsen für einen Monat zu bestimmen, müssen wir der Jahreszinsen berechnen:
Zinsen für einen Monat:
Um die Zinsen für zwei Monate zu bestimmen, berechnen wir der Jahreszinsen:
Zinsen für zwei Monate:
Tageszins berechnen – Beispiel
Wir können auch die Tageszinsen mit der Formel berechnen:
Um die Zinsen für einen Tag zu bestimmen, berechnen wir der Jahreszinsen:
Zinsen für einen Tag:
Um die Zinsen für Tage zu bestimmen, berechnen wir der Jahreszinsen:
Zinsen für Tage:
Zinsen berechnen mit dem Dreisatz
Wir können Zinsen auch immer mit dem Dreisatz berechnen. Wollen wir beispielsweise die Zinsen für Tage berechnen, so gehen wir wie folgt vor:
In diesem Video zu Jahres-, Monats- und Tageszinsen …
... werden Jahreszinsen, Monatszinsen und Tageszinsen einfach erklärt. Dazu wiederholen wir zunächst die Grundbegriffe der Zinsrechnung und erklären die drei Zinsarten. Anschließend betrachten wir Formeln zur Berechnung von Jahreszinsen, Monatszinsen und Tageszinsen an einem Beispiel. Wir schauen uns dabei an, wie man vom Jahreszins auf den Monatszins und auf den Tageszins kommt. Abschließend zeigen wir, wie man den Dreisatz zur Berechnung von Tageszinsen verwenden kann.
Transkript Jahres-, Monats-, Tageszinsen
Früher war es üblich Geld in Socken zu sammeln. Dörte Jonas hat diese alte Angewohnheit nie abgelegt. Doch letztens hat sie erfahren, dass es viel schlauer ist, ihr Geld bei einer Bank zu sparen. Dort bekommt sie nämlich zusätzlich zu ihrem Gesparten Jahres-, Monats- und Tageszinsen. Damit wir die berechnen können, machen wir uns zunächst noch einmal mit den Begriffen der Zinsrechnung vertraut: Wir haben das Kapital K, welches das gesparte oder geliehene Geld angibt, die Zinsen Z, um die sich das Kapital im Laufe des Jahres verändert und den Zinssatz p%, welcher das Verhältnis zwischen Zinsen und Kapital angibt. Man kann diese Werte mit diesen Formeln berechnen. Das Dreieck kann dir dabei helfen, dir die verschiedenen Formeln zu merken. Die Zinsen werden dabei meistens für ein ganzes Jahr angegeben. Dies nennen wir dann die Jahreszinsen. Oft wird aber auch monats- oder tageweise verzinst. Ein Jahr besteht bekannterweise aus 12 Monaten. Also kann man die Jahreszinsen einfach durch 12 teilen, um die Zinsen für einen Monat zu erhalten. Da wir in der Zinsrechnung immer von einem Jahr mit 360 Tagen ausgehen, rechnen wir für einen Monat immer mit 30 Tagen. Um von den Jahreszinsen auf die Zinsen für einen Tag zu gelangen, teilen wir sie durch 360. Wir können aber auch die Monatszinsen durch 30 teilen. Schauen wir uns doch einmal an einem Beispiel an, wie wir dies berechnen können. Nehmen wir dazu an, dass Dörte Jonas ihre größte Socke zur Bank nimmt und damit ein Sparkonto eröffnet. Wir wollen zu ihrem Gesparten zunächst die Jahreszinsen berechnen. In dieser Socke sind 328 Euro, dies ist ihr Kapital. Die Bank verzinst das Kapital mit einem Zinssatz von 1,5%. Rechnen wir das in einen Dezimalbruch um, so ist das 0,015. Um die Jahreszinsen zu berechnen, können wir die Formel Z, gleich K mal p%, verwenden. Wir setzen die Werte ein und erhalten 4 Euro 92 als Jahreszinsen. Um die Zinsen für einen Monat zu berechnen, müssen wir davon einfach ein Zwölftel bestimmen. Wir rechnen also ein Zwölftel mal 4 Euro 92 und erhalten 41 Cent für die Zinsen für einen Monat. Die Zinsen für 2 Monate können wir mit zwei Zwölftel mal 4 Euro 92 berechnen. Das sind 82 Cent. Bei Tageszinsen gehen wir ähnlich vor. Da mit einem Jahr von 360 Tagen gerechnet wird, können wir die Zinsen für einen Tag mit ein Dreihundertsechzigstel berechnen. Für einen Tag würde man also 1,4 Cent Zinsen bekommen. Wollen wir die Zinsen für 15 Tage berechnen, so können wir also 15 Dreihundertsechzigstel mit 4 Euro 92 multiplizieren und erhalten 21 Cent. Wir können aber auch immer den Dreisatz verwenden. Berechnen wir doch einmal die Zinsen für 80 Tage. 4 Euro 92 entsprechen den Zinsen für 360 Tage. Wir teilen dann durch 360, um auf die Zinsen für einen Tag zu gelangen und multiplizieren mit 80, um die Zinsen für 80 Tage zu berechnen. Die Zinsen für 80 Tage entsprechen also gerundet 1 Euro 12 Cent. Während Dörte Jonas ihre restlichen Socken zur Bank bringt, fassen wir das doch noch einmal zusammen. Wollen wir Tages- oder Monatszinsen berechnen, so bestimmen wir zunächst die Jahreszinsen mithilfe von dieser Formel. Für Monatszinsen berechnen wir den Anteil dann mit einem Bruch mit dem Nenner 12. Für die Tageszinsen setzen wir 360 in den Nenner. So, die Socken sind nun bei der Bank. Oh, damit lassen sich einige Finanzlöcher stopfen.
Jahres-, Monats-, Tageszinsen Übung
9.219
sofaheld-Level
6.600
vorgefertigte
Vokabeln
7.654
Lernvideos
37.087
Übungen
32.336
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Schriftliche Division – Übungen
- Meter
Das lachen am Ende
Eine Legende besagt dass das die zwei immer noch versuchen den Safe zu stopfen.😉 Echt cooles Video
Das Video ist gut
habs geschnallt danke und wie viel Geld hatte diese Oma die muss doch ein Miliatär sein oder so
Cooles Video