Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Dreiecksungleichung – Erklärung

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.1 / 89 Bewertungen
Die Autor*innen
Avatar
Team Digital
Dreiecksungleichung – Erklärung
lernst du in der Unterstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse

Dreiecksungleichung – Erklärung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Dreiecksungleichung – Erklärung kannst du es wiederholen und üben.
  • Zeige die Dreiecksungleichung auf.

    Tipps

    Bevor Werte eingesetzt werden, schreibt man die allgemeine Form einer Gleichung auf.

    Ein Antwortsatz schließt die Rechnung ab.

    Lösung

    Ein Dreieck hat die Seitenlängen $a=4$, $b=7$, $c=8$. Zeige, dass die Dreiecksungleichung für alle Seiten erfüllt ist. Sie lautet:

    $a+b > c$

    Am Anfang einer Rechnung wird beschrieben, was gegeben ist und ausgerechnet werden muss.

    Eingesetzt ergibt sich:

    $4+7 > 8$

    $ \Leftrightarrow 11 > 8$

    Das muss jetzt nachgerechnet werden, weshalb die entsprechenden Zahlen eingesetzt werden.

    Die Dreiecksungleichung ist also für diese Seiten erfüllt. Aber es muss auch gelten:

    $a+c > b$

    und

    $c+b > a$

    Die Dreiecksungleichung muss für alle Seiten gelten, sodass diese ebenfalls nachgerechnet werden müssen.

    Eingesetzt ergibt sich:

    $4+8 > 7$

    $ \Leftrightarrow 12> 7$

    und

    $8+7 > 4$

    $ \Leftrightarrow 15> 4$

    Das muss nun nachgerechnet werden. Deshalb werden die entsprechenden Zahlen eingesetzt.

    Die Dreiecksungleichung ist also für alle Seiten erfüllt.

    Ein Antwortsatz schließt die Rechnung ab.

  • Bestimme, ob man aus den Längen ein Dreieck bilden kann.

    Tipps

    Eine allgemeine Gleichung enthält immer Variablen.

    Mit der Dreiecksungleichung bestimmt man Eigenschaften von Dreiecken.

    Lösung

    Man kann die Dreiecksungleichung auch benutzen, um herauszufinden, ob drei Längen ein Dreieck bilden.

    Dazu berechnet man, ob die Dreiecksungleichung erfüllt ist. Es recht dabei zu überprüfen, ob die Summe der beiden kürzeren Längen größer ist als die längste Länge.

    Daher hat diese Gleichung ihren Namen.

    Gegeben sind die Längen $a=5$, $b=3$ und $c=7$.
    Möchte man herausfinden, ob man damit ein Dreieck konstruieren kann, muss man sie in die Dreiecksungleichung einsetzen.

    Um die Gleichung zu verwenden, müssen die gegebenen Werte eingesetzt werden.

    Die allgemeine Dreiecksungleichung lautet:

    $a+b > c$

    Eingesetzt und ausgerechnet ergibt sich:

    $5 + 3>7$

    $\Leftrightarrow 8>7$

    Also können die drei Längen ein Dreieck bilden.

    Eine allgemeine Gleichung enthält immer Variablen. Allerdings könnte man die Gleichung auch für die anderen Längen aufstellen.

    Betrachtet man die Längen $a=4$, $b=3$ und $c=10$ und setzt sie in die Dreiecksungleichung ein, erhält man:

    $4+3 > 10$

    $\Leftrightarrow7 > 10$

    Das ist offensichtlich nicht erfüllt. Also können die Längen kein Dreieck bilden.

    Hier werden die gegebenen Längen in die Dreiecksungleichung eingesetzt.

  • Prüfe die Aussagen zur Dreiecksungleichung.

    Tipps

    Die Seitenlängen jedes Dreiecks erfüllen die Dreiecksungleichung. Diese Aussagen kann man auch umkehren.

    Lösung

    Diese Aussagen sind richtig:

    • Die Dreiecksungleichung ist für alle Seiten erfüllt.
    • Weil die Längen die Dreiecksungleichung erfüllen, muss man mit ihnen ein Dreieck bilden können.
    In einem Dreieck müssen alle Seitenlängen die Dreiecksungleichung erfüllen. Diese Aussage kann man auch umkehren: Erfüllen drei Längen die Dreiecksungleichung, können sie ein Dreieck bilden.
    • Wäre die Seite $c$ nur eine Längeneinheit größer, wäre die Dreiecksungleichung nicht erfüllt.
    Wäre die Seite $c$ eine Längeneinheit größer, dann wäre sie $5$ Längeneinheiten lang. Da die anderen beiden Seiten $2$ und $3$ Längeneinheiten lang sind, ergibt sich:

    $2+3=5$

    Damit ist die Dreiecksungleichung nicht erfüllt, denn beide Seiten sind genauso groß wie die dritte Seite, aber nicht größer.

    Diese Aussagen sind falsch:

    • Auch wenn die Dreiecksungleichung nicht erfüllt wäre, würden die Längen ein Dreieck bilden.
    In einem Dreieck müssen alle Seitenlängen die Dreiecksungleichung erfüllen.
    • Es gibt in diesem Dreieck eine Seitenlänge, die größer ist als die Summe der beiden anderen.
    Das kann man durch Nachrechnen überprüfen:

    $2+3=5>4$

    $2+4=6>3$

    $3+4=7>2$

    Also ist jede der Seitenlängen kürzer als die Summe der beiden anderen. Die Dreiecksungleichung ist erfüllt.

  • Bestimme, ob die Längen ein Dreieck bilden können.

    Tipps

    Damit drei Längen ein Dreieck bilden können, müssen sie die Dreiecksungleichung erfüllen.

    Die Dreiecksungleichung für ein Dreieck der Seitenlängen $a=4$, $b=7$ und $c=8$ berechnet man so:

    $\begin{array}{llll} a+b &>& c & \\ 4+7 &>& 8 &\\ 11 &>& 8 & \end{array}$

    Lösung

    Damit drei Längen ein Dreieck bilden können, müssen sie die Dreiecksungleichung erfüllen. Es genügt die Summe der kürzesten Längen zu bilden und zu überprüfen, ob sie größer ist als die letzte Länge.

    Für den ersten Satz an Längen $a=3$, $b=7$ und $c=8$ ergibt sich:

    $3+7>8$

    $\Leftrightarrow10>8$

    Die Dreiecksungleichung ist also erfüllt und man kann aus den Längen ein Dreieck bilden. Bei den anderen Längen geht man genauso vor.

    Diese Längen können ein Dreieck bilden:

    $a=3$, $b=7$ und $c=8$

    $a=4$, $b=6$ und $c=8$

    $a=4$, $b=5$ und $c=7$

    Diese Längen können kein Dreieck bilden:

    $a=1$, $b=2$ und $c=3$

    $a=3$, $b=4$ und $c=8$

  • Bestimme die korrekten Aussagen über Dreiecksungleichungen.

    Tipps

    Eine allgemeine Form der Dreiecksungleichung lautet:

    $a+b>c$

    • $a$, $b$ und $c$ sind die Seitenlängen eines Dreiecks
    Lösung

    Diese Aussagen sind richtig:

    • Jede Kombination der Seitenlängen eines Dreiecks muss die Dreiecksungleichung erfüllen.
    • Mit der Dreiecksungleichung kann man bestimmen, ob drei Längen ein Dreieck bilden können.
    Dies sind die beiden wichtigsten Anwendungen der Dreiecksungleichung.
    • Sind drei Längen gegeben, muss die Summe der beiden kürzeren größer sein als die längste Seite. Dann kann ein Dreieck gebildet werden.
    Das ist die Bedingung, dass die drei Seiten ein Dreieck bilden können.
    • Wenn du von Punkt $A$ zu Punkt $B$ gelangen willst, ist der direkte Weg immer kürzer als ein Umweg über einen abseits dieses Weges gelegenen Punkt $C$.
    Die Alltagserfahrung der Aussage entspricht der Dreiecksungleichung: Der direkte Weg ist immer der kürzeste.

    Diese Aussage ist falsch:

    • Um ein Dreieck zu bilden, reicht es, dass die Summe der beiden kürzeren Seiten genauso lang ist wie die längste Seite.
    Die Summe der beiden kürzeren Seiten muss größer sein als die längste Seite, sonst ergibt sich eine Strecke.
  • Bestimme die minimale Seillänge.

    Tipps

    Mit dem Satz des Pythagoras kann man Seitenlängen an rechtwinkligen Dreiecken ausrechnen.

    Lösung

    Um die fehlende Länge zu bestimmen, erinnert sie sich an einen wichtigen Satz, den sie in der Schule gelernt hat. Den Satz des Pythagoras.

    Dieser lautet:

    $a^2+b^2=c^2$

    Hier sind $a$ und $b$ die beiden Längen am rechten Winkel.

    Mit dem Satz des Pythagoras kann man Seitenlängen an rechtwinkligen Dreiecken ausrechnen.

    Jetzt müssen nur noch die Längen eingesetzt werden:

    $c^2= 3^2+4^2$

    $\Leftrightarrow c^2=25$

    $\Leftrightarrow c=5$

    Um $c$ zu bestimmen, muss die Wurzel gezogen werden.

    Das Seil muss also mindestens $5$ Meter lang sein. Zum Glück hat Diana so viel Meter Seil dabei. Während sie es spannt, überlegt sie, ob diese Längen auch ein Dreieck ergeben können.

    Dazu nutzt sie die Dreiecksungleichung und schreibt auf:

    $a+b > c$

    $\Leftrightarrow3+4 > 5$

    $\Leftrightarrow7 > 5$

    Die Längen können also ein Dreieck ergeben. Zufrieden klettert Diana los in ein neues Abenteuer ...

    Mit der Dreiecksungleichung kann man bestimmen, ob man mit drei Längen ein Dreieck bilden kann.