30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Das dreidimensionale Koordinatensystem

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 5.0 / 1 Bewertungen

Die Autor*innen
Avatar
Team Digital
Das dreidimensionale Koordinatensystem
lernst du in der Oberstufe 7. Klasse - 8. Klasse - 9. Klasse

Grundlagen zum Thema Das dreidimensionale Koordinatensystem

Nach dem Schauen dieses Videos wirst du in der Lage sein, dich im dreidimensionalen Koordinatensystem zurechtzufinden.

Koordinatenebenen.jpg

Zunächst lernst du, worin sich das dreidimensionale Koordinatensystem vom zweidimensionalen Koordinatensystem unterscheidet. Anschließend zeichnen wir Punkte in das dreidimensionale Koordinatensystem ein. Abschließend erfährst du, warum wir Koordinaten von Punkten im Koordinatensystem nicht eindeutig bestimmen können und was uns dabei helfen kann.

Punkte ins dreidimensionale Koordinatensystem einzeichnen.jpg

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Koordinatensystem, kartesisch, räumlich, Koordinatenursprung, Koordinatenebenen, und Koordinatenzug.

Bevor du dieses Video schaust, solltest du bereits das zweidimensionale Koordinatensystem kennen.

Nach diesem Video wirst du darauf vorbereitet sein, mehr zum Themengebiet der analytischen Geometrie zu lernen.

Transkript Das dreidimensionale Koordinatensystem

Gehst du auch nach einem langen Schultag hin und wieder mal joggen um den Kopf frei zu kriegen? Das monotone Laufen wirkt entspannend. Falls es dann doch mal eintönig wird, kann man sich ja auch mal von der zweidimensionalen Laufebene trennen und den dreidimensionalen Raum erobern. Und für den absoluten Adrenalin-Kick gibts dann auch noch das Parkour-Running. Um auch im dreidimensionalen Raum den Überblick zu behalten, schauen wir uns einmal das dreidimensionale Koordinatensystem an. Fangen wir erst einmal in bekannten Gewässern an: das zweidimensionale Koordinatensystem kennen wir schon. Bei diesem ebenen Koordinatensystem stehen die x- und die y-Achse senkrecht aufeinander, beide haben einen positiven und einen negativen Abschnitt, und alle Punkte auf dieser Ebene sind durch zwei Koordinaten eindeutig verortet. Um nun eine dritte Dimension hinzuzufügen, wird eine dritte Achse benötigt. Auch wenn es hier nicht überall nach neunzig Grad aussieht, dürfen wir uns nicht täuschen lassen: die diagonale Achse verläuft ebenfalls senkrecht zu den anderen beiden Achsen. Doch um die Räumlichkeit auf einem Blatt Papier visualisieren zu können, wird die Achse in einem 45-Grad-Winkel gezeichnet. Genauso wie wir es von Schrägbildern kennen. Da die Achsen senkrecht zueinanderstehen, sprechen wir auch von einem „kartesischen Koordinatensystem“. Der Namensgeber hierfür ist übrigens der französische Philosoph und Mathematiker René Descartes. Jetzt wäre es natürlich zu einfach, diese neue dritte Achse als z-Achse zu bezeichnen. Es ist allerdings allgemein üblich, dass die nach vorn laufender Achse mit x, die zur Seite verlaufende Achse mit y, und die nach oben verlaufender Achse mit z bezeichnet wird. Statt x, y und z findet man manchmal auch die Achsenbezeichnungen x-eins, x-zwei und x-drei. Wir bleiben allerdings erstmal bei x, y und z und teilen als nächstes die Achsen in gleichlange Einheiten ein. Während bei der y- und z-Achse wie gewohnt eine Einheit zwei Kästchenlängen entspricht, ist es bei der x-Achse jeweils eine Kästchendiagonale. Die Einheiten werden also aufgrund des räumlichen Effekts verkürzt dargestellt. Das sieht doch ganz hübsch aus, oder? Besonders schön anzusehen sind die Koordinatenebenen, die von den Achsen aufgespannt werden. Die x-y-Ebene verläuft horizontal, die y-z-Ebene und die x-z-Ebene vertikal. Auch diese Ebenen stehen, wie die Koordinatenachsen, senkrecht aufeinander. Sehr elegant! Schauen wir uns als nächstes an, wie man Punkte ins räumliche Koordinatensystem einzeichnet. Der wohl am einfachsten einzuzeichnende Punkt ist der Koordinatenursprung. Funfact: Das O steht übrigens für „origin“, also Ursprung. Wie passend! Er befindet sich im gemeinsamen Schnittpunkt der Koordinatenachsen, in „null, null, null“. Ja, du hast richtig gehört: Da wir nun drei Achsen haben, bilden die Koordinaten eines Punktes im Raum ein sogenanntes Zahlentripel. Wenn wir andere Punkte einzeichnen wollen, zum Beispiel den Punkt „zwei, drei, vier“, gehen wir - vom Koordinatenursprung aus - zwei Einheiten in Richtung der x-Achse, also nach vorne, dann drei Einheiten in Richtung der y-Achse, also nach rechts, und von dort aus anschließend vier Einheiten entlang der z-Achse, also nach oben. An diesem Endpunkt des sogenannten Koordinatenzuges befindet sich der gesuchte Punkt P. Wenn die Koordinaten der Punkte negativ sind, müssen wir natürlich in Richtung des negativen Abschnitts der jeweiligen Achse gehen. So verläuft der Koordinatenzug des Punktes „minus zwei, eins, minus drei“, zwei Einheiten nach hinten, eine Einheit nach rechts, und drei Einheiten nach unten. Der Punkt liegt daher hier. Es sieht so aus, als würde Q genau senkrecht unter P liegen. Das ist allerdings eine optische Täuschung, die dadurch entsteht, dass wir das räumliche Koordinatensystem auf einer zweidimensionalen Bildschirmfläche abbilden. Natürlich liegt P viel weiter vorne als Q, aber ohne Koordinatenzüge kann man das nicht erkennen. Etwas klarer wird es vielleicht, wenn wir zwischen dem Ursprung und den Punkten P und Q jeweils einen Quader einzeichnen. Da sehen wir eindeutig, dass der Quader von P VOR der y-Achse und der Quader von Q hinter der y-Achse verläuft. Damit liegt P also weiter vorne als Q. Und was sagst du zu diesem Punkt? Liegt er auf der waagerechten Kante des roten Quaders, oder auf der senkrechten Kante des grünen Quaders? Spoileralarm: Weder noch. Die Koordinaten sind nicht eindeutig ablesbar und die genaue Lage können wir erst bestimmen, wenn wir den Koordinatenzug kennen. Jetzt wird klar: Der Punkt S liegt noch weiter vorne, als wir dachten. Man muss im dreidimensionalen Raum also wirklich die Augen offenhalten und darf sich nicht hinters Licht führen lassen. Bevor es also in den nächsten Parkour geht, fassen wir die wichtigsten Punkte nochmal zusammen. Beim dreidimensionalen Koordinatensystem können wir durch eine dritte, diagonale Achse die Räumlichkeit darstellen. Die neue Reihenfolge der Achsenbezeichnungen solltest du dir dabei gut merken: Die x-Achse verläuft nach vorn, die y-Achse nach rechts und die z-Achse nach oben. Manchmal lauten die Bezeichnungen auch x-eins, x-zwei und x-drei. Da es jetzt drei Achsen gibt, haben Punkte dementsprechend auch drei Koordinaten. Um sie einzuzeichnen, nutzen wir den Koordinatenzug, mit dem wir die Achsen einzeln abschreiten. Eingezeichnete Punkte können wir in diesem Koordinatensystem erst dann verorten, wenn wir den dazugehörigen Koordinatenzug kennen. Jetzt, da du nun ganz genau weißt, wo welche Punkte zu verorten sind, kannst du sie ziel- und treffsicher in deine nächste dreidimensionale Laufrunde einbinden.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

3.810

sofaheld-Level

6.574

vorgefertigte
Vokabeln

10.220

Lernvideos

42.134

Übungen

37.242

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden