Schulausfall:
sofatutor 30 Tage kostenlos nutzen

Videos & Übungen für alle Fächer & Klassenstufen

Anteil, Bruchteil, Ganzes 04:17 min

Textversion des Videos

Transkript Anteil, Bruchteil, Ganzes

Es ist Halloween, die Nacht der Nächte. Für einen Geist wie Buuhgo ist dies die Nacht, um unbemerkt von Haus zu Haus zu ziehen und Leute zu erschrecken. Um seinen Erfolg zu beobachten, muss Buuhgo sich mit Anteil, Bruchteil und Ganzem auskennen. In diesem Video lernst du, wie du einen Anteil vom Ganzen als Bruch darstellen kannst. In der ersten Straße standen 7 Häuser. Schauen wir uns doch einmal an, bei wie vielen Häusern Buuhgo die Menschen erschrecken konnte. Bei 3 von 7 Häusern konnte er den Menschen tatsächlich Angst einjagen. 7 stellt hier das Ganze dar, da dies die Gesamtzahl der Häuser ist. Betrachten wir die 3 Häuser, so schauen wir uns einen Anteil an, da dies nur ein Teil der Häuser ist. Zur Beschreibung von Anteilen können wir Brüche verwenden. Wir können den Anteil also so schreiben. Man sagt: Drei Siebtel. Dann nennen wir den Anteil auch Bruchteil. Wie du siehst, besteht ein Bruch aus drei Komponenten. Die obere Zahl eines Bruchs, also hier die 3, nennen wir Zähler. Der Zähler zählt die Teile, die wir betrachten. Die untere Zahl des Bruchs ist der Nenner. Der Nenner benennt die Art eines Anteils. Da wir hier 7 Häuser haben, auf die wir uns insgesamt beziehen, ist der Nenner also 7. In der Mitte des Bruchs steht der Bruchstrich, der einem geteilt-Zeichen entspricht. Buuhgo ist schon bei der nächsten Straße angekommen, in der insgesamt 15 Häuser stehen. Wie wir sehen, hat er es dort geschafft, die Menschen in 11 von 15 Häusern zu erschrecken. Insgesamt gab es hier 15 Häuser, dies ist also das Ganze und auch der Nenner in dem Bruch, mit dem wir den Anteil beschreiben können. Da Buuhgo die Menschen in 11 Häusern erschrecken konnte, dies also die Teile sind, die wir zählen, ist der Zähler in diesem Bruch 11. Andersherum können wir die 4 der 15 Häuser, in denen Buuhgo niemanden erschrecken konnte, mit dem Bruch Vier Fünfzehntel darstellen. Da wir hier nur die beiden Möglichkeiten, also erschrecken und nicht erschrecken hatten, ergeben der Zähler 11 und der Zähler 4 wieder das Ganze, also die 15 Häuser. In der nächsten Straße, die Buuhgo besucht, steht ihm eine ganz besondere Herausforderung bevor. Hier befinden sich nämlich 5 Hochhäuser und er würde gerne in jedes Stockwerk gehen. Jedes der Hochhäuser ist in vier Stockwerke aufgeteilt. Insgesamt gibt es also 5 mal 4 und das sind 20 Stockwerke. Betrachten wir fünf der Stockwerke, könnten wir sie durch den Bruch Fünf Zwanzigstel beschreiben. Für jedes einzelne Hochhaus entspricht ein Stockwerk dem Bruch ein Viertel. Betrachten wir also die einzelnen Stockwerke bezogen auf ein einzelnes Hochhaus als Art unserer Teile, können wir 5 Stockwerke in mehreren Hochhäusern auch durch den Bruch Fünf Viertel beschreiben. Es ist also immer wichtig darauf zu achten, was man als Bezugsgröße in den Nenner des Bruchs setzt. Hier steht der Nenner Viertel dann nicht für die Gesamtzahl, sondern für die Art des Anteils, also die Stockwerke. Während Buuhgo weiterzieht, fassen wir zusammen. Zur Beschreibung von Anteilen können wir Brüche verwenden. Als Bruch nennen wir den Anteil auch Bruchteil. Ein Bruch besteht aus drei Komponenten. Die obere Zahl eines Bruchs nennen wir Zähler. Der Zähler zählt die Teile, die wir beschreiben. Die untere Zahl des Bruchs ist der Nenner. Der Nenner benennt die Art eines Anteils. Erschreckt Buuhgo wohl immernoch? Da ist er wohl nicht der einzige, der rumgeistert.

13 Kommentare
  1. Es war Seher schwer aber es hat geholfen
    😃

    Von Frau Schweizer, vor etwa einem Monat
  2. Danke für den Video ich finde ,dass es toll ist das ihr auch eine kleine Geschichte in den Video gemacht habt :)

    Von Sandra C., vor etwa 2 Monaten
  3. Ok.

    Von Salehiamal1, vor 2 Monaten
  4. Nice gemacht 👻

    Von Jan Lischka, vor 3 Monaten
  5. War sehr cool , Danke !

    gut danke

    Von Christine Abel Strehlau, vor 4 Monaten
Mehr Kommentare

Anteil, Bruchteil, Ganzes Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Anteil, Bruchteil, Ganzes kannst du es wiederholen und üben.

  • Beschreibe das Aufstellen von Brüchen.

    Tipps

    Ein Bruch beschreibt einen Anteil, bezogen auf ein Ganzes.

    In drei von vier Jahreszeiten ist nicht Halloween. Das macht einen Bruchteil von $\frac{3}{4}$.

    Auf dem Bruchstrich steht die Zahl, die die Anteile zählt, unter dem Bruchstrich die Zahl, die die Art der Anteile benennt.

    Lösung

    Buuhgo misst seinen Erfolg an Halloween durch den Anteil der Häuser, in denen er Menschen erschrecken konnte. Er stellt diesen Anteil bezogen auf das Ganze aller Häuser als Bruch dar.

    Ein Bruch beschreibt nämlich immer einen Anteil, bezogen auf ein Ganzes. Dieser Bezug wird durch den Bruchstrich verdeutlicht: Über dem Bruchstrich steht der Anteil; unter dem Bruchstrich steht das Ganze, auf das sich der Anteil bezieht. Man sagt auch: Die Zahl auf dem Bruchstrich zählt die Anteile und heißt daher Zähler. Die Zahl unter dem Bruchstrich benennt der Art der Anteile und heißt daher Nenner. Schreibt man einen Anteil, bezogen auf ein Ganzes, als Bruch, so nennt man ihn auch Bruchteil.

    Buuhgo zieht los in eine Straße mit fünfzehn Häusern. In $11$ der Häuser kann Buuhgo Menschen erschrecken. Die Zahl $11$ ist hier der Anteil der Häuser dieser Straße, in denen Buuhgo schreckhafte Bewohner antrifft. Das Ganze, auf das sich dieser Anteil bezieht, ist die Zahl der Häuser dieser Straße, also $15$.

    Der zugehörige Bruchteil der Häuser mit schreckhaften Bewohnern ist dann der Bruch $\frac{11}{15}$. Den Bruchteil der Häuser mit weniger schreckhaften Bewohnern kannst du ganz analog bestimmen: In vier von elf Häusern hat Buuhgo keinen Erfolg, der Anteil beträgt hier also $4$. Das zugehörige Ganze sind wieder alle $15$ Häuser dieser Straße und der entsprechende Bruchteil ist $\frac{4}{15}$.

  • Ergänze die Brüche.

    Tipps

    Sind bei einem achteckigen STOP-Schild sieben Ecken rostig, so haben die rostigen Ecken einen Bruchteil von $\frac{7}{8}$.

    Zähle die relevanten Anteile und das zugehörige Ganze. Bei dem zugehörigen Bruch steht die Zahl der Anteile über dem Bruchstrich.

    Lösung

    Du kannst jeweils den passenden Bruch finden, indem du die relevanten Teile zählst und das zugehörige Ganze, auf das sich die Teile beziehen. Die Zahl der Teile schreibst du über den Bruchstrich, die Zahl des Ganzen unter den Bruchstrich. So entsprechen elf von fünfzehn Häusern mit schreckhaften Bewohnern dem Bruchteil $\frac{11}{15}$. Die Zahl der Anteile ist $11$ und sie bezieht sich auf das Ganze der $15$ Häuser. Hierbei muss aber die Zahl des Anteils nicht kleiner als die Zahl des Ganzen sein: Bezieht man fünf Stockwerke verschiedener Häuser auf das Ganze der vier Stockwerke eines Hauses, so erhält man den Bruchteil $\frac{5}{4}$.

    Auf diese Weise findest du folgende Zuordnungen:

    • Elf von fünfzehn Häusern, in denen Buhhgo die Bewohner erschreckt, entsprechen einem Bruchteil von ... $\frac{11}{15}$.
    • Erschreckt Buuhgo die Bewohner dreier Häuser in einer Straße mit nur sieben Häusern, so beträgt der Bruchteil ... $\frac{3}{7}$.
    • Fünf Stockwerke in fünf vierstöckigen Hochhäusern entsprechen einem Stockwerk-Bruchteil von ... $\frac{5}{20}$.
    • Einem Stockwerk eines vierstöckigen Hauses entspricht der Stockwerk-Bruchteil $\frac{1}{4}$.
    • Fünf Stockwerke in mehreren Hochhäusern, bezogen auf alle Stockwerke eines vierstöckigen Hochhauses, entsprechen dem Bruchteil ... $\frac{5}{4}$.
  • Ordne die passenden Brüche zu.

    Tipps

    Zähle die Lücken der gleichartigen Sachen. Die Zahl der Lücken ist jeweils der Zähler des Bruches.

    Der Nenner ist die Gesamtzahl, auf die sich die Einzelstücke beziehen. Sie ist hier immer durch die Gebinde (wie Eierkarton oder Stiftschachtel) gegeben.

    Tante Ernas Hühner haben vierzehn Eier gelegt. Bezogen auf einen $10$-er Eierkarton beträgt der Bruchteil $\frac{14}{10}$.

    Lösung

    In dieser Aufgabe ist jeweils der Bruchteil der fehlenden Stücke zu bestimmen. Das Ganze ist durch das jeweilige Gebinde vorgegeben. Der zugehörige Bruch hat daher im Zähler stets die Zahl der Lücken, im Nenner die Gesamtzahl der Plätze des jeweiligen Gebindes. So erhältst du folgende Zuordnungen:

    Torte: Von ursprünglich $12$ Stücken fehlen bereits $4$. Dies entspricht dem Bruchteil $\frac{4}{12}$.

    Pralinen: Von den $25$ Pralinen aus der Schachtel hat ein jemand bereits $7$ genascht. Der fehlende Bruchteil ist also $\frac{7}{25}$.

    Sprudel: In dem Sprudelkasten fehlen $5$ Flaschen. Der Kasten hat drei Reihen mit Platz für jeweils vier Flaschen. In einem vollen Kasten wären daher $4 \cdot 3 = 12$ Flaschen. Der Bruchteil der fehlenden Flaschen ist also $\frac{5}{12}$.

    Farbenkasten: Aus dem Farbenkasten hat jemand gerade drei Buntstifte zum Malen entnommen. Es sind noch neun Buntstifte darin. Das Ganze des Kastens besteht demnach aus $12$ Stiften, die $3$ fehlenden machen den Bruchteil $\frac{3}{12}$ aus.

    Eierkarton: In dem $10$-er Eierkarton liegen sieben Eier. Es fehlen demnach $10-7=3$ Eier. Diese bestimmen den Bruchteil $\frac{3}{10}$.

  • Ordne jeder Beschreibung den passenden Bruch zu.

    Tipps

    Bestimme zu jedem Obst das Ganze, auf das sich Buuhgos Beute bezieht.

    Hat Buuhgo von sieben Melonen sechs zurückgelassen, so ist seine Beute der Bruchteil $\frac{1}{7}$, denn eine der sieben Melonen hat er mitgenommen oder aufgegessen.

    Lösung

    Zu Buuhgos Naschzug kannst du jeweils den Anteil an dem Ganzen bestimmen. So findest du den passenden Bruch. Der Zähler des Bruches ist die Zahl der Anteile, der Nenner die Zahl des Ganzen, auf das sich diese Anteile beziehen:

    • Von $12~\text{kg}$ Pflaumen nascht Buuhgo $2~\text{kg}$. Diese $2~\text{kg}$ bestimmen den Anteil und beziehen sich auf das Ganze der $12~\text{kg}$ Pflaumen in der Obstkammer. Der Bruchteil ist also $\frac{2}{12}$.
    • Von den grünen Äpfeln liegen in der Obstkammer nur $13$. Sie bestimmen die Gesamtheit oder das Ganze, auf das sich Buuhgos Anteil bezieht. Zwei Äpfel hat er stibitzt, dies entspricht dem Bruchteil $\frac{2}{13}$.
    • Buuhgo entwendet noch $3$ Kisten Blaubeeren und lässt $7$ zurück. Das Ganze besteht also als $3+7=10$ Kisten Blaubeeren. Der Bruchteil von Buuhgos Blaubeerbeute ist $\frac{3}{10}$.
    • Von $11$ Beuteln mit Birnen lässt Buuhgo nur $4$ Beutel in der Obstkammer zurück. Seine Beute beträgt also $11-4 =7$ Beutel Birnen. Dies entspricht dem Bruchteil $\frac{7}{11}$.
  • Definiere die Begriffe.

    Tipps

    Der Zähler eines Bruches ist eine der beiden Zahlen, aus denen der Bruch besteht.

    Um einen Kuchen gerecht aufzuteilen, kannst du den jedem Geburtstagsgast zustehenden Bruchteil ausrechnen.

    Der Bruchstrich dient zum Teilen.

    Lösung

    Einen Anteil an einem Ganzen kannst du als Bruch schreiben. Die Zahl über dem Bruchstrich zählt die Teile, die Zahl unter dem Bruchstrich nennt die Art der Teile. Die Bestimmung des Anteils eines Ganzen entspricht einer Division, dabei wird die Zahl der Teile durch die Zahl des Ganzen dividiert. Als Bruch geschrieben, nennt man den Anteil eines Ganzen auch Bruchteil.

    Aus diesen Überlegungen findest du folgende korrekte Sätze:

    • Der Zähler eines Bruches ... steht über dem Bruchstrich.
    • Der Nenner eines Bruches ... benennt die Art der Anteile, die der Bruch beschreibt.
    • Ein Bruchteil ... ist ein Anteil bezogen auf ein Ganzes, als Bruch geschrieben.
    • Der Bruchstrich ... entspricht einem Geteilt-Zeichen.
  • Analysiere die Aussagen.

    Tipps

    Für eine große Biskuit-Torte brauchst du $12$ Eier. Bestimme Anteil und Bruchteil, bezogen auf eine $10$-er-Eierschachtel.

    Lösung

    Ein Bruchteil beschreibt einen Anteil, bezogen auf ein Ganzes. Mit dem Anteil ist nicht notwendig eine Teilmenge des Ganzen gemeint, sondern eine Zahl von Teilen der Art, die durch das Ganze festgelegt sind. Man sagt auch: Der Zähler des Bruchteils zählt die Teile oder Anteile, der Nenner nennt der Art der Teile bzw. das Ganze, auf das sich die Teile beziehen.

    Folgende Aussagen sind richtig:

    • „Der Zähler eines Bruches entspricht dem Dividenden einer Division, der Nenner dem Divisor.“ Der Bruchstrich entspricht einem Geteilt-Zeichen. Der Zähler entspricht dabei dem Dividenden, der Nenner dem Divisor.
    • „$\frac{14}{12}$ von einem Kasten mit zwölf Saftflaschen sind zwei Flaschen mehr als ein voller Kasten.“ Ist der Zähler eines Bruches größer als der Nenner, so ist der mit dem Bruch beschriebene Anteil größer als das Ganze. Der Zähler entspricht dem Anteil, der auf den Nenner als das Ganze bezogen wird. Die $12$ im Nenner beschreibt einen vollen Kasten Saft. Die $14$ im Zähler zählt den Anteil: $14$ Flaschen. Das sind $2$ Flaschen mehr als $12$, also zwei Flaschen mehr als in einem vollen Kasten.
    • „Bezieht man denselben Anteil auf ein anderes Ganzes, so ändert sich der Bruch.“ Drei von vier Äpfeln machen einen Bruchteil von $\frac{3}{4}$ aus. Nimmt man noch drei Birnen hinzu, so machen die ursprünglichen drei Äpfel einen Bruchteil von $\frac{3}{7}$ des Obstes aus.
    Folgende Aussagen sind falsch:

    • „Bei einem Bruchteil ist das Ganze stets größer als der Anteil.“ Wenn Buuhgo fünf Stockwerke verschiedener Häuser auf das Ganze der vier Stockwerke eines Hauses bezieht, so ist der zugehörige Bruch $\frac{5}{4}$. Hier ist der Anteil $5$ größer als das zugehörige Ganze $4$. Mit Anteil ist daher nicht eine Teilmenge des Ganzen gemeint, sondern die Zahl der Teile, bezogen auf die Zahl der Teile eines Ganzen.
    • „Zur Beschreibung eines Anteils, bezogen auf ein Ganzes, ist es egal, welche der beiden Zahlen man auf den Bruchstrich schreibt.“ Auf dem Bruchstrich steht immer die Anzahl der Teile. Man sagt auch: Der Zähler (also die Zahl auf dem Bruchstrich) zählt die Teile, der Nenner benennt die Art der Teile, die ein Ganzes ausmachen.
    • „Drei von vier Äpfeln machen denselben Bruchteil aus wie sechs von acht Äpfeln.“ Verdoppelt man den Anteil und das Ganze, auf das er sich bezieht, so ändert sich der Bruch. Das Ergebnis der Division, die durch den Bruch beschrieben wird, bleibt aber dasselbe. Denn drei von vier Äpfeln machen den Bruchteil $\frac{3}{4}$ aus, sechs von acht Äpfeln dagegen den Bruchteil $\frac{6}{8}$. Die ungekürzten Brüche $\frac{3}{4}$ und $\frac{6}{8}$ sind verschieden. Die zugehörige Division $3:4$ liefert aber dasselbe Ergebnis wie $6:8$.