30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Ableitungsfunktion – Steigung einer Funktion an einer beliebigen Stelle

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Sei der Erste und gib eine Bewertung ab!

Die Autor*innen
Avatar
Team Digital
Ableitungsfunktion – Steigung einer Funktion an einer beliebigen Stelle
lernst du in der Oberstufe 7. Klasse - 8. Klasse

Grundlagen zum Thema Ableitungsfunktion – Steigung einer Funktion an einer beliebigen Stelle

Inhalt

Die Ableitungsfunktion in Mathe

Skispringer können während eines Sprungs sehr hohe Geschwindigkeiten erreichen. Aber wie schnell werden sie genau? Wenn man die Funktion kennt, die die Flugbahn beschreibt, kann man die Ableitung nutzen, um etwas über die Geschwindigkeit herauszufinden. Daher beschäftigen wir uns im Folgenden mit der Ableitungsfunktion.

Ableitungsfunktion – Erklärung

Wir nehmen an, dass wir die Funktion $s(t)$ kennen, mit der die zurückgelegte Strecke während eines Sprungs beschrieben wird. Diese Funktion lautet:

$s(x) = 2,6 \cdot \pu{m//s^{2}} \cdot x^{2}$

Dabei ist $x$ in der Einheit Sekunden gegeben. Wir wissen schon, wie wir die mittlere oder durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten mithilfe des Differenzenquotienten bestimmen können. Dazu verwenden wir das Steigungsdreieck der Funktion und berechnen den Quotienten der Differenzen, eben den Differenzenquotienten: $\frac{\Delta y}{\Delta x}$. Die momentane Geschwindigkeit zu einem Zeitpunkt $x_0$ ist der Grenzwert des Differenzenquotienten für sehr kleine Differenzen: $v(x_0) = s^{\prime}(x_0)$. Er ist allgemein folgendermaßen definiert:

$f^{\prime}(x_0) = \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim\limits_{h \to 0} \frac{ f(x_0+h)-f(x_0) }{ h }$

Dabei entspricht $h$ der Breite von $\Delta x$. Wir könnten nach dieser Methode die Steigung, also die Geschwindigkeit während des Sprungs, für jeden beliebigen Zeitpunkt $x_0$ berechnen. Wenn wir die Geschwindigkeit allerdings zu vielen oder allen Zeitpunkten des Sprungs herausfinden möchten, können wir einen effizienteren Weg wählen. Dazu berechnen wir den Differentialquotienten für $x_0$, ohne einen expliziten Wert einzusetzen.


Ableitungsfunktion bestimmen

Wir lassen an dieser Stelle die Einheiten weg und berechnen den Differentialquotienten für die Funktion $s(x) = 2,6x^{2}$ an der Stelle $x_0$:

$s^{\prime}(x_0)= \lim\limits_{h \to 0} \frac{ s(x_0+h)-s(x_0) }{ h }$

$s^{\prime}(x_0)= \lim\limits_{h \to 0} \frac{ 2,6(x_0+h)^{2} - 2,6(x_0^{2}) }{ h }$

Wir klammern die binomische Formel aus und lösen im Anschluss die Klammer auf:

$s^{\prime}(x_0)= \lim\limits_{h \to 0} \frac{ 2,6x_0^{2} +5,2x_0h + 2,6h^{2} -2,6x_0^{2} }{ h } $

Die Terme $ 2,6x_0^{2}$ und $ - 2,6x_0^{2}$ heben sich gegenseitig auf. Damit haben wir:

$s^{\prime}(x_0)= \lim\limits_{h \to 0} \frac{ 5,2x_0h+2,6h^{2} }{ h }$

Jetzt können wir $h$ kürzen und es bleibt:

$s^{\prime}(x_0)= \lim\limits_{h \to 0} ~ 5,2x_0 +2,6h$

Da $h$ gegen null läuft, läuft auch $2,6h$ gegen null. Damit erhalten wir schließlich:

$s^{\prime}(x_0) = 5,2x_0$

Das ist die Ableitungsfunktion der Funktion $s$. Wir können jeden beliebigen Wert (aus dem Definitionsbereich) einsetzen, um die Steigung der Funktion $s$ an dieser Stelle zu bestimmen. Oder, bezogen auf unser Beispiel, die Geschwindigkeit der Skispringer. Damit können wir auch eine Definition aufschreiben.

Ableitungsfunktion – Definition

Die Funktion $f$ sei auf dem Intervall $I$ definiert und $x_0 \in I$. Wenn der Grenzwert des Differenzenquotienten $f^{\prime}(x_0) = \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim\limits_{h \to 0} \frac{ f(x_0+h)-f(x_0) }{ h }$ existiert, so heißt $f$ an der Stelle $x_0$ differenzierbar. Man nennt diesen Grenzwert die Ableitung der Funktion$f$ an der Stelle $x_0$ und schreibt dafür $f^{\prime}(x_0)$.

Wenn du wie oben beschrieben die Differenzialquotienten von $f$ für beliebige Werte $x_0$ berechnest, ohne bereits einen Wert für $x_0$ einzusetzen, so erhältst du die Ableitungsfunktion $f^{\prime}$ der Funktion $f$. Im Beispiel ist $s^{\prime}(x) = 5,2 x$ die Ableitungsfunktion der Funktion $s(x) = 2,6 x^{2}$.

Ableitungsfunktion - Zusammenfassung

In diesem Video wird erklärt, was eine Ableitungsfunktion ist und wie sie mit dem Differenzenquotienten zusammenhängt. Im Video werden Beispiele berechnet. Neben Text und Video findest du Aufgaben und Übungen, um dein Wissen über die Ableitungsfunktionen zu vertiefen.

Transkript Ableitungsfunktion – Steigung einer Funktion an einer beliebigen Stelle

Wir schreiben das 17. Jahrhundert. Es ist der ultimative Showdown zwischen zwei der weltbesten Mathematiker. Eines der epischsten Mathe-Battles ever - Isaac Newton vs. Gottfried Wilhelm Leibniz. Beide entwickelten fast zeitgleich und unabhängig voneinander die Differentialrechnung. Aber teilen wollten sie sich die Ehre nicht. Worum es geht? Um Methoden zur „Bestimmung der Steigung von Funktionen an einer beliebigen Stelle“. Bisher wissen wir schon, dass wir mit dem Grenzwert der Sekantensteigungen, also dem Differentialquotienten, die Steigung einer Funktion an einer konkreten Stelle „x-null“ berechnen können. Zum Beispiel bei der Normalparabel, an der Stelle zwei. Da wir hier zwei nicht direkt einsetzen dürfen, weil wir dann durch Null teilen würden, müssen wir den Term geschickt umformen. Mit Hilfe der dritten binomischen Formel, und geschicktem Kürzen, können wir den Term so weit vereinfachen, dass wir „x-null“ einfach einsetzen und so die Steigung an dieser Stelle berechnen können. Ist ja ganz nett, diese Methode, aber es ist doch ein ziemlich großer Aufwand, den Grenzwert für jede einzelne Stelle zu berechnen. Viel einfacher ist es, wenn wir eine neue Funktion entwickeln, bei der wir jede beliebige Stelle nur noch einsetzen müssen und direkt die Steigung an dieser Stelle ermitteln könnten. Solch eine Funktion nennen wir „Ableitung“. Dafür verankern wir den Punkt P nicht an einer konkreten Stelle, sondern setzen ihn an eine beliebige Stelle x-null. Dann brauchen wir noch einen Punkt Q an einer zweiten Stelle x, den wir auf P zuwandern lassen, damit aus der Sekante eine Tangente wird. Das heißt, wir lassen x gegen x-null laufen. Dadurch wird die Differenz „x minus x-null“ unendlich klein, aber das Prozedere kennen wir ja schon von unserem Differentialquotienten. Diese sogenannte x-Methode, schauen wir uns jetzt anhand der Normalparabel genauer an. Anstatt also hier eine konkrete Stelle einzusetzen, lassen wir „x-null“ allgemein und formen nur die Funktionswerte entsprechend um. Die Differenz im Zähler können wir wieder mit der dritten binomischen Formel umformen, um dann zu kürzen. Wenn nun x gegen x-null läuft, erhalten wir als Summe zwei x-null. Da wir die Stelle x-null allgemein gelassen haben, gilt die Funktion „zwei x-null“ für jede beliebige Stelle x-null. Dann können wir auch die Null wieder wegnehmen und erhalten als Ableitungsfunktion der Normalparabel „zwei x“. Damit können wir nun die Steigung der Funktion an jeder Stelle berechnen, indem wir den entsprechenden Wert einfach in die Ableitungsfunktion einsetzen. Manchmal ist es jedoch nicht ganz so einfach, die Differenz im Nenner zu kürzen, deshalb gibt es neben der x-Methode auch die h-Methode. Hier schauen wir uns zur Abwechslung mal nicht die Normalparabel „x-Quadrat“ sondern die Kubikfunktion „x hoch drei“ an. Wir haben das gleiche Ausgangszenario: eine Sekante durch die Punkte P und Q. Wieder lassen wir Q auf dem Funktionsgraphen unendlich dicht an P annähern, wodurch die Differenz zwischen x und x-null unendlich klein wird. Diesmal fokussieren wir uns jedoch auf genau diese Differenz und nennen sie „h“. h ist also die Differenz von x und x-null. Aus „x“ wird dann „x-null plus h“. Dadurch können wir unsere Formel umschreiben. Im Nenner fällt nun „x-null“ raus, dadurch wird die Grenzwertbestimmung etwas einfacher. Da wir x unendlich dicht an x-null heranführen wollen, muss also deren Differenz „h“ gegen null gehen. Dann setzen wir im Zähler die entsprechenden Funktionsterme ein. Die kubische Klammer können wir anschließend auflösen, und sehen, dass „x-null hoch drei“ rausfällt. Wenn wir nun aus allen Summanden ein h rauskürzen, erkennen wir, dass, wenn h gegen null geht, diese zwei Summanden ebenfalls gegen null gehen. Übrig bleibt „drei x-null Quadrat“. Die kubische Funktion „x hoch drei“ hat also als Ableitung die Funktion „drei x Quadrat“. Damit können wir nun auch hier für jede Zahl die entsprechende Steigung an dieser Stelle berechnen. Ganz schön schlau und revolutionär, was sich diese beiden Genies Newton und Leibniz da überlegt haben. Wir fassen das Ganze noch einmal in einer Übersicht zusammen. Mithilfe der Grenzwertbestimmung können wir Ableitungsfunktionen rechnerisch ermitteln, mit denen wir dann die Steigung einer Funktion an jeder beliebigen Stelle berechnen können. Dabei berechnen wir den Differentialquotienten nicht für eine konkret festgelegte, sondern eine allgemeine Stelle „x-null“. Dafür gibt es zwei verschiedene Schreibweisen. Bei der x-Methode lassen wir x gegen „x-null“ laufen. Die h-Methode ist vor allem für komplexere Funktionen geeignet, da bei dieser Schreibweise nur das h im Nenner steht. Dadurch wird die Grenzwertbestimmung einfacher. Verschiedene Schreibweisen für die Ableitungsfunktion hatten übrigens auch Newton und Leibniz entwickelt. Ihr Prioritätsstreit über die Entdeckung der Differentialrechnung gehört zu den heftigsten und weitreichendsten Konflikten der Wissenschaftsgeschichte. Dabei hätten sie sich gar nicht so stark in die Haare kriegen müssen, weil mittlerweile anerkannt ist, dass sie unabhängig voneinander auf die Idee gekommen sind. Vielleicht hätten sie besser mal einen Gang runtergeschaltet und stattdessen zusammengearbeitet - dann hätten sie wohl noch viel mehr erreicht!

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

2.575

sofaheld-Level

5.805

vorgefertigte
Vokabeln

10.215

Lernvideos

42.307

Übungen

37.382

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden