30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Vielecke konstruieren

Konstruktion, Vierecke, Seiten, Winkel

Dreiecke konstruieren

Um ein Dreieck zu konstruieren, benötigst du drei Punkte, die nicht alle auf einer Geraden liegen. Verbindest du diese miteinander, so erhältst du ein Dreieck. Dabei sind die drei Punkte die Ecken und die Verbindungsstrecken die Seiten des Dreiecks. So einfach ist das.

Du kannst Dreiecke auch konstruieren, wenn bestimmte Seiten und / oder Winkel gegeben sind. Hierfür verwendest du die Kongruenzsätze.

Wie aber kannst du spezielle Dreiecke konstruieren?

Rechtwinklige Dreiecke konstruieren

Zur Konstruktion eines rechtwinkligen Dreiecks verwendest du den Satz des Thales.

Satz_des_Thales.jpg

Was besagt dieser Satz? Die Strecke $\overline{AB}$ sei der Durchmesser eines Halbkreises. Wähle nun auf diesem Halbkreis einen beliebigen Punkt $C$. Dann ist das Dreieck $\triangle_{ABC}$ rechtwinklig mit dem rechten Winkel in $C$.

Da bei einem rechtwinkligen Dreieck der Flächeninhalt gerade die Hälfte des Produktes der Kathetenlängen ist, kannst du ein rechtwinkliges Dreieck mit gegebenem Flächeninhalt, zum Beispiel $10~\text{cm}^{2}$, wie folgt konstruieren:

  • Wähle die Länge der Katheten so, dass ihr Produkt $2\cdot 10~\text{cm}^2=20~\text{cm}^{2}$ ergibt. Hier wird $4~\text{cm}$ und $5~\text{cm}$ angenommen.
  • Zeichne eine Seite der Länge $4~\text{cm}$.
  • Errichte in einem der beiden Eckpunkte ein Lot.
  • Zeichne nun einen Kreisbogen mit dem Radius $r=5~\text{cm}$ um diesen Eckpunkt.
  • Dieser Kreisbogen schneidet das Lot.
  • Verbinde diesen Schnittpunkt mit dem anderen Eckpunkt der Ausgangsseite.
  • Du hast nun ein rechtwinkliges Dreieck mit dem gegebenen Flächeninhalt konstruiert.

Gleichschenklige und gleichseitige Dreiecke konstruieren

Zunächst einmal klären wir, was eigentlich gleichschenklige und gleichseitige Dreiecke sind:

  • In einem gleichschenkligen Dreieck sind mindestens zwei Seiten gleich lang. Diese gleich langen Seiten werden Schenkel genannt. Die verbleibende Seite ist die Basis des Dreiecks. Die beiden an der Basis anliegenden Winkel werden Basiswinkel genannt. Die Basiswinkel sind immer gleich groß.
  • In einem gleichseitigen Dreieck sind alle drei Seiten gleich lang. Daraus folgt auch, dass alle drei Winkel gleich groß, nämlich $60^{\circ}$, sind.

Kommen wir nun zur Konstruktion eines gleichschenkligen Dreiecks.

  • Zeichne zunächst die Basis.
  • Zeichne nun um jeden der beiden Eckpunkte einen Kreisbogen so, dass diese sich schneiden. Wähle hierbei einen Radius, der größer als die Hälfte der Länge der Basis ist.
  • Der Schnittpunkt beider Kreisbögen hat zu jedem der beiden Eckpunkte den gleichen Abstand.
  • Somit bildet das Dreieck mit den beiden Eckpunkten der Basis sowie dem Schnittpunkt der Kreisbögen ein gleichschenkliges Dreieck.

Wenn du den Radius der Kreisbögen genauso groß wählst wie die Länge der Basis, erhältst du mit der obigen Konstruktion ein gleichseitiges Dreieck.

Übrigens: Ein gleichseitiges Dreieck kannst du auch mit Hilfe eines Kreises konstruieren.

Vierecke konstruieren

Du möchtest Vierecke konstruieren, zum Beispiel ein Quadrat oder ein Rechteck. Im Folgenden siehst du, wie du bei der Konstruktion eines Quadrates vorgehst.

  • Zeichne eine Seite des Quadrates.
  • Errichte in beiden Eckpunkten dieser Seite ein Lot.
  • Zeichne nun um jeden der beiden Eckpunkte einen Kreis. Der Radius ist jeweils die Seitenlänge des Quadrates.
  • Jeder der beiden Kreise schneidet das Lot, welches in dem Mittelpunkt dieses Kreises errichtet wurde.
  • Wenn du die so erhaltenen beiden Schnittpunkte sowohl mit den benachbarten Eckpunkten der Ausgangsseite als auch miteinander verbindest, hast du ein Quadrat konstruiert.

Ebenso kannst du ein Rechteck konstruieren.

Möchtest du ein Parallelogramm konstruieren, folgst du diesen Schritten:

  • Zeichne eine Seite des Parallelogramms.
  • Trage in beiden Eckpunkten den gleichen Winkel an diese Seite so an, dass die daraus resultierenden Halbgeraden parallel zueinander sind.
  • Konstruiere nun eine Parallele zu der Ausgangsseite so, dass diese die beiden Halbgeraden schneidet. Diese Schnittpunkte sind die beiden fehlenden Eckpunkte des Parallelogramms.

Regelmäßige Vielecke konstruieren

Vielecke sind ebene Figuren mit $3$ oder mehr Ecken. Diese dürfen nicht auf einer Geraden liegen. Von jeder dieser Ecken gehen zwei Kanten, oder auch Seiten, zu den beiden benachbarten Ecken ab. Bei einem regelmäßigen Vieleck sind alle Seiten gleich lang und alle Innenwinkel gleich groß. Das hast du ja bereits bei einem gleichseitigen, also regelmäßigen Dreieck gesehen.

Hier siehst du, wie du ein regelmäßiges Fünfeck konstruieren kannst:

  • Du beginnst mit einem Kreis.
  • Markiere einen Punkt auf dem Kreisrand und verbinde diesen mit dem Mittelpunkt des Kreises. Du zeichnest also den Radius ein.
  • Trage an der Radiuslinie im Mittelpunkt einen Winkel von $72^{\circ}$ an. Der freie Schenkel schneidet die Kreislinie in einem weiteren Eckpunkt des Fünfecks.
  • Trage nun an diesem Schenkel im Mittelpunkt wieder den Winkel $72^{\circ}$ an.
  • Fahre so fort, bis du alle $5$ Eckpunkte gefunden hast.
  • Zuletzt verbindest du diese Eckpunkte zu einem regelmäßigen Fünfeck.

1109_Fünfeck.jpg

Woher kommt eigentlich der Winkel $72^{\circ}$? Diesen erhältst du, wenn du den Vollwinkel $360^{\circ}$ durch $5$, die Anzahl der Ecken, dividierst.

So kannst du übrigens jedes beliebige regelmäßige Vieleck, zum Beispiel ein in einen Kreis einbeschriebenes Achteck, konstruieren.