Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Zahlenfolgen fortsetzen (Muster erkennen)

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 17 Bewertungen
Die Autor*innen
Avatar
Team Digital
Zahlenfolgen fortsetzen (Muster erkennen)
lernst du in der Unterstufe 1. Klasse - 2. Klasse

Zahlenfolgen fortsetzen (Muster erkennen) Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zahlenfolgen fortsetzen (Muster erkennen) kannst du es wiederholen und üben.
  • Gib den richtigen Rechenschritt für das Muster der Zahlenfolge an.

    Tipps

    Nur eine Antwort ist richtig.

    Schaue dir die ersten beiden Zahlen an und versuche herauszufinden, was gerechnet wurde.

    Wenn die Zahlenfolge kleiner wird, dann wird subtrahiert.

    Lösung

    Die Zahlen der Zahlenfolge werden in einem regelmäßigen Abstand kleiner. Das bedeutet, dass immer eine Zahl subtrahiert wird. Bei der Zahlenfolge $34,29,24,19,14,...$ wird immer $-5$ abgezogen.

  • Vervollständige die Zahlenfolgen mit der jeweils fehlenden Zahl.

    Tipps

    Schaue dir zunächst die Abstände der Zahlen an. Fällt dir da ein Muster auf?

    Wenn der Abstand gleich bleibt, dann wird immer die gleiche Zahl addiert oder subtrahiert.

    Bleibt der Abstand nicht gleich, dann könnte das auf eine Multiplikation oder Division hinweisen.

    Lösung

    Der Abstand der Zahlen bei der ersten Zahlenfolge ist unregelmäßig und wird immer größer. Die Zahlen der Zahlenfolge werden alle mit $2$ multipliziert.
    Der Abstand der Zahlen bei der zweiten Zahlenfolge ist konstant. Es wird immer $3$ addiert.

  • Ermittle die passenden Ergänzungen der Zahlenfolgen.

    Tipps

    Wenn die Zahlen der Zahlenfolge nicht immer nur größer bzw. kleiner werden, dann besteht das Muster aus mehreren Schritten.

    Die jeweiligen Schritte der Zahlenfolge können sich auch ändern.

    Lösung

    Bei der ersten Zahlenfolge besteht das abwechselnde Muster aus der Subtraktion mit $4$ und der Multiplikation mit $3$. Damit ergibt sich: $8,4,12,8,24,20,60$

    In der zweiten Zahlenfolge liegt ein verschachteltes Muster vor. Die Rechenschritte selbst folgen einem Muster und werden immer um $2$ größer. Es wird also nacheinander $1,3,5,7,...$ addiert. Die vollständige Zahlenfolge lautet: $6,7,10,15,22,31,42$

    Das Muster der dritten Zahlenfolge besteht aus der Subtraktion mit $2$ und der Addition mit $5$. Daraus ergibt sich: $7,5,10,8,13,11,16$

    Bei der letzten Zahlenfolge wird zunächst mit $2$ multipliziert und anschließend werden $6$ subtrahiert. Die Zahlenfolge ist dann: $7,14,8,16,10,20,14$

  • Vervollständige die Zahlenfolgen mit den fehlenden Zahlen.

    Tipps

    Diese Muster sind sehr verschachtelt. Es ist ratsam, wenn du dir anguckst, ob die Zahlen der Zahlenfolge abwechselnd kleiner und größer werden. Dann kannst du das Muster in zwei verschiedene Rechenoperationen unterteilen.

    Die Schritte innerhalb einer Rechenoperation können sich auch mit einem regelmäßigen Muster ändern.

    Die regelmäßige Änderung der Rechenschritte kann zum Beispiel die nacheinander ausgeführte Addition von $1,3,5,7,...$ sein. Dabei ändert sich der Summand immer konstant um $2$.

    Lösung

    Bei der ersten Zahlenfolge besteht das Muster aus einer Subtraktion, die einem eigenen Muster folgt, und der Multiplikation mit $2$. Das Muster innerhalb der Subtraktion ist, dass der Rechenschritt immer um $2$ kleiner wird. Bei der Subtraktion werden also nacheinander $2,4,6,8, ...$ subtrahiert. Damit ergibt sich für die Zahlenfolge insgesamt: $9,7,14,10,20,14,28,20,40$.

    In der zweiten Zahlenfolge wird der Schritt zur nächsten Zahl immer um $2$ größer, wobei die Schritte bei der Addition mit $2$ beginnen. Es wird also nacheinander $2,4,6,8,...$ addiert. Die vollständige Zahlenfolge lautet: $3,5,9,15,23,33,45,59,75$.

    Bei dem Muster der dritten Zahlenfolge wird der Schritt immer um $2$ kleiner und fängt bei der Subtraktion mit $1$ an. Die gesamte Zahlenfolge lautet dann: $74,73,70,65,58,49,38,25,10$.

  • Bestimme die nächsten beiden Zahlen der Zahlenfolge.

    Tipps

    Dieses Muster besteht aus zwei Rechenoperationen, die sich die ganze Zeit abwechseln.

    Die erste Operation ist eine Subtraktion, da die Zahlen im ersten Teil des Musters kleiner werden. Dieser Abstand ist bei jeder Verkleinerung der gleiche.

    Die zweite Operation ist eine Multiplikation, da die Zahlen nach der Subtraktion größer werden. Schaut man sich die Vergrößerung an, merkt man, dass die Abstände nicht gleich sind, sondern hier dem Muster einer Multiplikation folgen.

    Lösung

    Das Muster besteht aus zwei Rechenoperationen, da die Zahlen immer abwechselnd kleiner und größer werden.
    Die erste Rechenoperation des Musters ist eine Subtraktion mit $3$, die konstant bleibt.
    Da die Vergrößerung in diesem Muster nicht gleichmäßig ist, kann es sich nicht um eine einfache Addition handeln. Die zweite Rechenoperation ist also eine Multiplikation mit $2$.
    Die beiden nächsten Zahlen der Zahlenfolge sind also $...\,19,38$.

  • Bestimme das Muster und setze die Zahlenfolge fort.

    Tipps

    Wenn Zahlen abwechselnd kleiner und größer werden, dann besteht das Muster aus mindestens zwei verschiedenen Rechenoperationen. Diese kannst du dir einzeln angucken.

    Innerhalb einer Rechenoperation kannst du auch eine Regelmäßigkeit finden. Zum Beispiel wird bei der Addition der Abstand gleichmäßig um 2 größer.

    Lösung

    Die Zahlen der Zahlenfolge werden immer abwechselnd kleiner und dann wieder größer. Bei der Verkleinerung beträgt der Abstand der beiden Zahlen zunächst $4$. Dieser wird mit jedem Schritt um $2$ größer.
    Die Verkleinerung ist also eine Subtraktion, die einem regelmäßigen Muster folgt.

    Die Vergrößerung kann mit einer Multiplikation dargestellt werden. Die Zahl wird immer mit $3$ multipliziert.
    Die beiden Zahlen nach der $48$ sind $144$ und $130$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.090

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.447

Lernvideos

35.544

Übungen

33.097

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden