Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Wurzeln ziehen – Intervallschachtelung

Definition – Intervallschachtelung: Die Intervallschachtelung ist eine Methode zur Annäherung an reelle Zahlen, besonders wichtig bei der Wurzelbestimmung. So funktioniert der Schritt-für-Schritt-Prozess und wie man die Wurzel einer Zahl annähert. Interessiert? Dies und mehr im folgenden Text nachlesen!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.4 / 94 Bewertungen
Die Autor*innen
Avatar
Team Digital
Wurzeln ziehen – Intervallschachtelung
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Wurzeln ziehen – Intervallschachtelung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Wurzeln ziehen – Intervallschachtelung kannst du es wiederholen und üben.
  • Gib wieder, wie die Wurzelbestimmung durch Intervallschachtelung funktioniert.

    Tipps

    Eine Quadratzahl ist eine Zahl, die durch Multiplikation einer ganzen Zahl mit sich selbst entsteht.

    Um das Lösungsintervall zu halbieren, muss man dessen Mitte finden.

    In diesem Verfahren rechnet man so lange Nachkommastellen aus, bis man mit der Genauigkeit der Lösung zufrieden ist.

    Lösung

    Da manche Wurzeln irrational sind, kann man sie nicht genau berechnen. Deshalb nutzt man Verfahren wie die Intervallschachtelung, um das Ergebnis näherungsweise zu bestimmen.

    Im Verfahren wird das Intervall, in dem die Lösung liegt, schrittweise eingegrenzt.

    • Im ersten Schritt werden deshalb die beiden Quadratzahlen (das sind Zahlen, die durch die Multiplikation einer ganzen Zahl mit sich selbst entstehen) gefunden, die die gesuchte Zahl eingrenzen. Da aber die Wurzel der gesuchten Zahl bestimmt werden soll, müssen auch die Wurzeln der Intervallgrenzen gezogen werden.
    Jeder Schritt grenzt das Lösungsintervall weiter ein.

    • Im zweiten Schritt wird das Intervall halbiert, indem man die Mitte dieses Intervalls bestimmt. Dann findet man heraus, ob die Lösung im Intervall oberhalb oder unterhalb dieser Mitte liegt.
    Hat man das Intervall halbiert, gibt es nicht mehr viele Möglichkeiten für die Lage der Lösung innerhalb dieses Intervalls.

    • Deshalb bestimmt man im dritten Schritt durch Probieren die genauen Grenzen des Intervalls. Dazu quadriert man nacheinander die verbleibenden Zahlen des Intervalls und vergleicht sie mit der gesuchten Zahl. Hat man die beiden Zahlen gefunden, die jeweils kleiner und größer als die gesuchte Zahl sind, ist das Verfahren für diese Nachkommastelle beendet.
    Möchte man eine sehr genaue Lösung finden, kann man das Verfahren beliebig oft durchführen. Dazu wendet man die drei Schritte von oben immer wieder für die nächste Nachkommastelle an.

  • Berechne die Wurzel von $76$ näherungsweise.

    Tipps

    Hier gilt: Wenn $a^2$ < $b^2$ ist, dann muss $a$ < $b$ sein.

    Falls dich die Intervalle verwirren, so stelle sie dir auf dem Zahlenstrahl vor.

    Lösung

    Das Intervall, in dem die Lösung liegt, wird schrittweise eingegrenzt.

    Im ersten Schritt werden die beiden Quadratzahlen gefunden, die die gesuchte Zahl eingrenzen.

    Hier sind das $64$ und $81$.

    Da aber die Wurzel der gesuchten Zahl bestimmt werden soll, müssen auch die Wurzeln der Intervallgrenzen gezogen werden, also:

    $\sqrt{64}=8$ und $\sqrt{81}=9$

    Das bedeutet, dass die Wurzel aus $76$ zwischen den Zahlen $8$ und $9$ liegt.

    Jeder weitere Schritt grenzt das Lösungsintervall weiter ein.

    Im zweiten Schritt wird das Intervall halbiert, indem man die Mitte dieses Intervalls bestimmt. Da man diese Mitte allerdings mit $76$ vergleichen muss, quadriert man sie:

    ${8,5}^2=72,25$

    Dann findet man heraus, ob die Lösung im Intervall oberhalb oder unterhalb dieser Mitte liegt.

    Dazu vergleicht man sie mit $76$ und überlegt, was das für das Lösungsintervall bedeutet.

    Da $72,25$ kleiner ist als $76$, muss $\sqrt{76}$ zwischen $8,5$ und $9$ liegen.

    Jetzt gibt es nicht mehr viele Möglichkeiten, wo die Lösung liegen kann. Deshalb bestimmt man im dritten Schritt durch Probieren die genauen Grenzen des Intervalls. Dazu erhöht man die Nachkommastelle um $1$, quadriert diese Zahlen und vergleicht sie mit der $76$:

    $8,6^2=73,96 < 76$

    $8,7^2=75,69 < 76$

    $8,8^2=77,44 >76$

    Da $76$ größer ist als $75,69$ und kleiner als $77,44$, muss die Lösung zwischen $8,7$ und $8,8$ liegen.

    Damit ist das Verfahren für diese Nachkommastelle beendet.

    Weil die Lösung aber für zwei Nachkommastellen bestimmt werden soll, muss das Verfahren noch für die nächste Nachkommastelle angewendet werden.

    Das gerade bestimmte Intervall wird in der Mitte geteilt und das Quadrat dieser Zahl berechnet:

    $8,75^2=76,56>76$

    Also gilt:

    $8,70 < \sqrt{76} < 8,75$

    Danach wird die zweite Nachkommastelle schrittweise um $1$ erhöht und die Quadrate werden bestimmt:

    $8,71^2=75,86 < 76$

    $8,72^2=76,04 > 76$

    Die Lösung muss also im Intervall zwischen $8,71$ und $8,72$ liegen.

    Nun wurde das Intervall auf zwei Nachkommastellen genau gefunden. Um herauszufinden, welche dieser Zahlen näher an der Lösung liegt, wird die Mitte dieses Intervalls bestimmt.

    Man erhält $8,715$. Das Quadrat dieser Zahl ergibt:

    $8,715^2=75,95<76$

    Die Lösung muss also zwischen $8,715$ und $8,720$ liegen. Hier wird aufgerundet und die Lösung mit zwei Nachkommastellen mit $8,72$ angegeben.

  • Bestimme die Wurzel von $38$ näherungsweise.

    Tipps

    Hier gilt: Wenn $a^2$ < $38$ < $b^2$ ist, dann muss $a$ < $\sqrt{38}$ < $b$ sein.

    Die Lösung soll auf zwei Nachkommastellen genau angegeben werden. Also muss auf die Zahl mit zwei Nachkommastellen gerundet werden.

    Dabei gehst du wie folgt vor:

    • Steht an der dritten Nachkommastelle eine Zahl von $1$ bis $4$, wird die zweite Nachkommastelle abgerundet.
    • Steht an der dritten Nachkommastelle eine Zahl von $5$ bis $9$, wird die zweite Nachkommastelle aufgerundet.

    Lösung

    Das Intervall, in dem die Lösung liegt, wird schrittweise eingegrenzt.

    Im ersten Schritt werden die beiden Quadratzahlen gefunden, die die gesuchte Zahl eingrenzen.

    Hier sind das $36$ und $49$.

    Weil aber die Wurzel der gesuchten Zahl bestimmt werden soll, müssen auch die Wurzeln der Intervallgrenzen gezogen werden. Es folgt:

    $\sqrt{36}=6$

    $\sqrt{49}=7$

    Das bedeutet, dass die Wurzel aus $38$ zwischen den Zahlen $6$ und $7$ liegt.

    Jeder weitere Schritt grenzt das Lösungsintervall weiter ein.

    Im zweiten Schritt wird das Intervall halbiert, indem man die Mitte dieses Intervalls bestimmt. Da man die Mitte allerdings mit $38$ vergleichen muss, quadriert man sie:

    ${6,5}^2=42,25$

    Dann findet man heraus, ob die Lösung im Intervall oberhalb oder unterhalb dieser Mitte liegt.

    Dazu vergleicht man sie mit $38$ und überlegt, was das für das Lösungsintervall bedeutet.

    Weil $42,25$ größer ist als $38$, muss $\sqrt{38}$ zwischen $6$ und $6,5$ liegen.

    Jetzt gibt es nicht mehr viele Möglichkeiten, wo die Lösung liegen kann. Deshalb bestimmt man im dritten Schritt durch Probieren die genauen Grenzen des Intervalls. Dazu quadriert man nacheinander die verbleibenden Zahlen des Intervalls und vergleicht sie mit der $38$:

    $6,1^2=37,21 < 38$

    $6,2^2=38,44 > 38$

    Da $38$ größer ist als $37,21$ und kleiner als $38,44$, muss die Lösung zwischen $6,1$ und $6,2$ liegen.

    Damit ist das Verfahren für diese Nachkommastelle beendet.

    Weil die Lösung aber für zwei Nachkommastellen bestimmt werden soll, muss das Verfahren noch einmal angewendet werden.

    Das gerade bestimmte Intervall wird also in der Mitte geteilt und das Quadrat dieser Zahl berechnet:

    $6,15^2=37,82<38$

    Demnach gilt:

    $6,15 < \sqrt{38} < 6,2$

    Danach wird die zweite Nachkommastelle schrittweise um $1$ erhöht und die Quadrate werden bestimmt:

    $6,16^2=37,95 < 38$

    $6,17^2=38,07 > 38$

    Die Lösung muss also im Intervall zwischen $6,16$ und $6,17$ liegen.

    Jetzt wurde das Intervall auf zwei Nachkommastellen genau gefunden. Um herauszufinden, welche dieser Zahlen näher an der Lösung liegt, wird die Mitte dieses Intervalls bestimmt.

    Man erhält $6,165$. Das Quadrat dieser Zahl ergibt:

    $6,165^2=38,01>38$

    Die Lösung muss also zwischen $6,160$ und $6,165$ liegen. Da die Lösung auf zwei Nachkommastellen genau sein soll und $6,165$ zu viele Nachkommastellen hat, wird abgerundet und $6,16$ angegeben.

  • Gib an, in welchen Intervallen die Wurzeln liegen.

    Tipps

    Berechne die Wurzeln mit der Intervallschachtelung und ordne sie so den Intervallen zu.

    Ein Zahlenstrahl macht Intervalle übersichtlicher.

    Lösung

    Die Berechnung der Wurzeln mit der Intervallschachtelung ergibt:

    A: $\sqrt{26} \approx 5,099$

    • $\sqrt{26}$ liegt also in den Intervallen $(5;~6)$ und $(5,09;~5,10)$.
    B: $\sqrt{14} \approx 3,742$
    • $\sqrt{14}$ liegt also in den Intervallen $(3;~4)$ und $(3,74;~3,75)$.
    C:$\sqrt{19} \approx 4,359$
    • $\sqrt{19}$ liegt also in den Intervallen $(4;~5)$ und $(4,35;~4,36)$.

  • Gib an, welche Aussagen wahr sind.

    Tipps

    Rationale Zahlen werden auch Bruchzahlen genannt. Man kann sie also darstellen, indem man eine Zahl durch eine andere Zahl teilt.

    Rundet man, um eine Lösung zu erhalten, so ist diese Lösung nicht genau.

    Man bestimmt den Flächeninhalt eines Quadrats, indem man die Seitenlänge quadriert.

    Natürliche Zahlen sind die Zahlen, die beim Zählen verwendet werden:

    • $1, 2, 3, 4, ...$
    Das sind alle positiven ganzen Zahlen.

    Lösung
    • Nicht alle Quadratwurzeln sind natürliche Zahlen.
    Das ist wahr, da Quadratwurzeln auch irrationale Zahlen sein können.
    • Wurzeln sind immer rationale Zahlen.
    Das ist unwahr, da die Lösung einer Wurzel auch irrational sein kann, z. B. $\sqrt{76}$.
    • Mit der Intervallschachtelung bestimmt man eine genaue Lösung.
    Das ist unwahr, da mit der Intervallschachtelung eine ungefähre Lösung bestimmt wird.
    • Man bestimmt die Seitenlänge eines Quadrats, indem man die Wurzel der Fläche bestimmt.
    Das ist wahr, denn bei einem Quadrat gilt $A=a^2$, wobei $A$ für den Flächeninhalt und $a$ für die Seitenlänge steht. Daraus folgt: $a=\sqrt{A}$.
    • Die Wurzel einer Quadratzahl ist eine natürliche Zahl.
    Das ist wahr, denn eine Quadratzahl ist das Quadrat einer natürlichen Zahl. Demnach muss die Wurzel einer Quadratzahl eine natürliche Zahl sein.
  • Bestimme den Flächeninhalt von Edelberts zweitem Grundstück.

    Tipps

    Der Flächeninhalt $A$ eines Rechtecks mit den Seitenlängen $a$ und $b$ ergibt sich durch:

    $A = a\cdot b$

    Lösung

    Die eingrenzenden Quadratzahlen von $32$ sind:

    $25<32<36$

    Die Wurzel aus $32$ liegt also zwischen den Zahlen $5$ und $6$. Für die erste Nachkommastelle berechnet man die Mitte und quadiert diese:

    $5,5^2=30,25$

    Da $30,25<32$ gilt, muss $\sqrt{32}$ zwischen $5,5$ und $6$ liegen. Anschließend berechnet man:

    $5,6^2=31,36 < 32$

    $5,7^2=32,49 > 32$

    Die Lösung liegt also zwischen $5,6$ und $5,7$. Auf eine Nachkommastelle gerundet ergibt sich:

    $\sqrt{32}\approx 5,7$

    Die eingrenzenden Quadratzahlen von $2$ sind:

    $1<2<4$

    Die Wurzel aus $2$ liegt also zwischen den Zahlen $1$ und $2$. Für die erste Nachkommastelle bestimmt man die Mitte dieses Intervalls und quadriert diese:

    $1,5^2=2,25$

    Da $2,25>2$ gilt, liegt $\sqrt{2}$ zwischen $1$ und $1,5$. Nun rechnet man schrittweise wie folgt:

    $1,1^2=1,21 < 2$

    $1,2^2=1,44 < 2$

    $1,3^2=1,69 < 2$

    $1,4^2=1,96 < 2$

    $1,5^2=2,25 > 2$

    Man erkennt, dass die Lösung zwischen $1,4$ und $1,5$ liegt. Man rundet nun ab und erhält:

    $1,4$

    Der Flächeninhalt $A$ eines Rechtecks mit den Seitenlängen $a$ und $b$ ergibt sich durch:

    $A = a\cdot b $

    Mit den berechneten Seitenlängen erhält man also folgenden Flächeninhalt:

    $A= \sqrt{2}\cdot\sqrt{32}\approx 1,4 \cdot 5,7 =7,98$

    Mit dem Wurzelgesetz $\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$ hätte man die Lösung auch direkt bestimmen können zu:

    $ \sqrt{2} \cdot \sqrt{32}= \sqrt{64} = 8$