Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Quadratische Funktionen – Verschiebung entlang der y-Achse

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Fx=X^2+C Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.0 / 194 Bewertungen
Die Autor*innen
Avatar
Team Digital
Quadratische Funktionen – Verschiebung entlang der y-Achse
lernst du in der Unterstufe 3. Klasse - 4. Klasse - Oberstufe 5. Klasse - 6. Klasse

Grundlagen zum Thema Quadratische Funktionen – Verschiebung entlang der y-Achse

Nach dem Schauen dieses Videos wirst du in der Lage sein, mit quadratischen Funktionen der Form f(x)=x2+c zu arbeiten.

Zunächst lernst du, die Eigenschaften und Funktionsgleichung einer Normalparabel. Anschließend stellst du fest, dass die Variation des absoluten Gliedes eine Verschiebung des Funktionsgraphen entlang der y-Achse verursacht. Abschließend lernst du, inwiefern der Scheitelpunkt und die Anzahl der Nullstellen von dem absoluten Glied abhängt.

Lerne etwas über quadratische Gleichungen, indem du die neue Diagnosemethode von Doktor Ferdinand von Xanthen kennenlernst.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie quadratische Funktion, Scheitelpunkt, Parabel, Normalparabel, quadratisches Glied, absolutes Glied, Funktionsgleichung, Funktionsgraph, Anzahl der Nullstellen und Wertetabelle.

Bevor du dieses Video schaust, solltest du bereits wissen, was eine lineare Funktion und eine Potenz ist.

Nach diesem Video wirst du darauf vorbereitet sein, den Einfluss des Streckfaktors quadratischer Funktionen zu lernen.

Transkript Quadratische Funktionen – Verschiebung entlang der y-Achse

Ein schrecklich schmerzhaftes Problem plagt die Bevölkerung. Der sogenannte "Handynacken" mindert die Lebensqualität. Linderung bietet eine neue Diagnosemethode von Doktor Ferdinand von Xanthen. Doktor Xanthens Röntgenmaschine ermittelt präzise die Lage des Haltungsschadens Und Doktor von Xanthen weiß auch um den diagnostischen Nutzen von Funktionen der Form f von x gleich x Quadrat plus c. Die Kopfform und -lage eines Menschen beschreibt Doktor von Xanthen mittels einer Parabel. Die Röntgenmaschine offenbart: zu Doktor von Xanthens geplagtem Patienten gehört die Parabel mit der Funktionsgleichung f von x gleich x Quadrat minus zwei. Zum Vergleich: die richtige Kopflage entspricht der Normalparabel, also der Funktion f von x gleich x Quadrat. Denn dann liegt der Kopf genau einmal auf der Schulter auf — an der einzigen Nullstelle der Normalparabel. Doktor von Xanthen pocht auch auf die Wichtigkeit der Wertetabelle, um die Parabel kompetent beschreiben zu können. Im Nu erstellt die Röntgenmaschine die Wertetabelle der Normalparabel mit den x-Werten minus 2, minus 1, 0, 1 und 2. Für alle x-Werte berechnet sie die zugehörigen Funktionswerte 4, 1, 0, 1 und 4, und trägt sie in die Wertetabelle ein. Mithilfe der Wertetabelle kann die Röntgenmaschine den Funktionsgraphen in einem Koordinatensystem darstellen. Die Normalparabel ist ACHSENSYMMETRISCH, nach OBEN geöffnet und hat ihren Scheitelpunkt im KOORDINATENURSPRUNG. Was können wir über den Handynacken des Patienten herausfinden? Doktor von Xanthen blendet deren Funktionsgleichung ein und lässt die Röntgenmaschine die zugehörige Wertetabelle berechnen. Die Wertetabelle mit den x-Werten -2, -1, 0, 1 und 2 enthält die Funktionswerte 2, -1, -2, -1 und 2. Anhand der Wertetabelle und des Graphen untersuchen wir die Lage des Kopfes. Der Scheitelpunkt der Kopfparabel liegt im Punkt S(0|-2). Auch diese Parabel ist achsensymmetrisch und nach oben geöffnet, ABER hat nun ZWEI Nullstellen. Das ist schlecht, denn nur wenn der Kopf mit genau einem Punkt auf Schulterhöhe liegt, ist die Haltung optimal! Doktor von Xanthens Diagnose lautet also, dass die Kopflage des Patienten gegenüber der Normalparabel genau um zwei Einheiten nach unten verschoben ist. Mit seiner traditionellen Methode versucht Doktor von Xanthen, die Kopflage des Patienten zu korrigieren. äh aus Demonstrationszwecken hat Doktor von Xanthen die Kopflage des Patienten überkorrigiert.

Ein Blick auf die Röntgenmaschine offenbart nichts Gutes. Schnell analysiert sie die Funktionsgleichung der Kopfparabel. Die Wertetabelle für die x-Werte -2, -1, 0, 1 und 2 fordert Doktor von Xanthen mit raschen Handgriffen an. Die neuen Einträge sind die Funktionswerte 5, 2, 1, 2 und 5. Mithilfe der Wertetabelle wird nun der Funktionsgraph in ein Koordinatensystem gezeichnet. Die Parabel für die aktuelle Kopflage hat ihren Scheitelpunkt in S(0|1). Sie ist wieder achsensymmetrisch und nach oben geöffnet. Allerdings besitzt sie gar keine Nullstelle — der Kopf liegt also überhaupt nicht auf Schulterhöhe auf! Verglichen mit der Normalparabel ist die Kopflagenparabel nun um genau eine Einheit nach oben verschoben. Doch auch für diese Fehlstellung besitzt Doktor von Xanthen eine schlagkräftige Lösung. Während der erneuten "Korrektur" fassen wir die Diagnosemethode zusammen. Eine quadratische Funktion der Form f von x gleich x Quadrat plus c beschreibt eine achsensymmetrische und nach oben geöffnete Parabel, die ihren Scheitelpunkt bei S(0|c) hat. Das heißt, der y-Achsenabschnitt des Graphen ist c. Ist der Parameter c gleich Null, handelt es sich um eine Normalparabel. Ist c größer als Null, so ist die Parabel gegenüber der Normalparabel um c Einheiten nach oben verschoben. Falls der Parameter c negativ ist, liegt eine gegenüber der Normalparabel entsprechend nach unten verschobene Parabel vor. Wenn auch Sie Ihren Handynacken verfluchen sollten Sie Doktor von Xanthen aufsuchen.

14 Kommentare
  1. Passt 👍🏻

    Von Amandariene, vor 12 Monaten
  2. Liebes Team,
    da ich morgen eine Klassenarbeit in Mathe zu quadratischen Funktionen schreibe, hat mir dieses Video sehr gut weiter geholfen.
    LG

    Von Madita Mueller, vor fast 4 Jahren
  3. Liebes Team, ihr habt eine tolle Einstiegsidee sehr gut umgesetzt. Die Schwerpunktsetzung ist passend zu den Bildungsstandards. Der Stoff wurde sehr gut animiert erklärt.
    Eine kleine Anmerkung zum Start hätte ich: An der Stelle 0.25 ("Hier hier nutzt Dr. ....") sollte eine allgemeine Beschreibung von quadratischen Funktionen erfolgen, da es ja ein Einführungsvideo sein soll. (z.B. "Funktionen, deren Argumente x die höchste Potenz 2 besitzen"). Auch, dass auf dem Schirm des Röntgenappartes ein Koordinatensystem hinterlegt ist, wäre erwähnenswert.
    Trotzdem danke für ein tolles Video, welches ich morgen einsetzen werde.
    Beste Grüße

    Von Yiren Y., vor mehr als 5 Jahren
  4. Liebes Team, ihr habt eine tolle Einstiegsidee sehr gut umgesetzt. Die Schwerpunktsetzung ist passend zu den Bildungsstandards. Der Stoff wurde sehr gut animiert erklärt.
    Eine kleine Anmerkung zum Start hätte ich: An der Stelle 0.25 ("Hier hier nutzt Dr. ....") sollte eine allgemeine Beschreibung von quadratischen Funktionen erfolgen, da es ja ein Einführungsvideo sein soll. (z.B. "Funktionen, deren Argumente x die höchste Potenz 2 besitzen"). Auch, dass auf dem Schirm des Röntgenappartes ein Koordinatensystem hinterlegt ist, wäre erwähnenswert.
    Trotzdem danke für ein tolles Video, welches ich morgen einsetzen werde.
    Beste Grüße

    Von Thomas S., vor mehr als 5 Jahren
  5. Hallo! Bitte beschreibe genauer, was du nicht verstanden hast. Gib beispielsweise die konkrete Stelle im Video mit Minuten und Sekunden an. Gerne kannst du dich auch an den Fach-Chat wenden, der von Montag bis Freitag zwischen 17-19 Uhr für dich da ist.
    Ich hoffe, dass wir dir weiterhelfen können.

    Von Albrecht K., vor mehr als 5 Jahren
Mehr Kommentare

Quadratische Funktionen – Verschiebung entlang der y-Achse Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Quadratische Funktionen – Verschiebung entlang der y-Achse kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.226

sofaheld-Level

6.600

vorgefertigte
Vokabeln

7.663

Lernvideos

37.087

Übungen

32.336

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden